A Python package for explainable cluster analysis
Project description
Clust-learn
A Python package for extracting information from large and high-dimensional mixed-type data through explainable cluster analysis.
Table of contents
- Introduction
- Overall architecture
- Implementation
- Installation
- Version and license information
- Bug reports and future work
- User guide & API
- Citing
1. Introduction
clust-learn
enables users to run end-to-end explainable cluster analysis to extract information from large and high-dimensional
mixed-type data, and it does so by providing a framework that guides the user through data preprocessing, dimensionality reduction,
clustering, and classification of the obtained clusters. It is designed to require very few lines of code, and with a strong
focus on explainability.
2. Overall architecture
clust-learn
is organized into four modules, one for each component of the methodological framework presented here:
Figue 1 shows the package layout with the functionalities covered by each module along with the techniques used, the explainability strategies available, and the main functions and class methods encapsulating these techniques and explainability strategies.
3. Implementation
The package is implemented with Python 3.9 using open source libraries. It relies heavily on pandas and scikit-learn. Read the complete list of requirements here.
It can be installed manually or from pip/PyPI (see Section 4. Installation).
4. Installation
The package is on PyPI. Simply run:
pip install clust-learn
5. Version and license information
- Version: 0.2.6
- Author: Miguel Alvarez-Garcia (malvarez.statistics@gmail.com)
- License: GPLv3
6. Bug reports and future work
Please report bugs and feature requests through creating a new issue here.
7. User guide & API
clust-learn
is organized into four modules:
- Data preprocessing
- Dimensionality reduction
- Clustering
- Classifier
Figue 1 shows the package layout with the functionalities covered by each module along with the techniques used, the explainability strategies available, and the main functions and class methods encapsulating these techniques and explainability strategies.
The four modules are designed to be used sequentially to ensure robust and explainable results. However, each of them is independent and can be used separately to suit different use cases.
7.i. Data preprocessing
Data preprocessing consists of a set of manipulation and transformation tasks performed on the raw data before it is used for its analysis. Although data quality is essential for obtaining robust and reliable results, real-world data is often incomplete, noisy, or inconsistent. Therefore, data preprocessing is a crucial step in any analytical study.
7.i.a. Data imputation
compute_missing()
compute_missing(df, normalize=True)
Calculates the pct/count of missing values per column.
Parameters
df
:pandas.DataFrame
normalize
:boolean
, default=True
Returns
missing_df
:pandas.DataFrame
- DataFrame with the pct/counts of missing values per column.
missing_values_heatmap()
missing_values_heatmap(df, output_path=None, savefig_kws=None)
Plots a heatmap to visualize missing values (light color).
Parameters
df
:pandas.DataFrame
- DataFrame containing the data.
output_path
:str
, default=None
- Path to save figure as image.
savefig_kws
:dict
, default=None
- Save figure options.
impute_missing_values()
impute_missing_values(df, num_vars, cat_vars, num_pair_kws=None, mixed_pair_kws=None, cat_pair_kws=None, graph_thres=0.05, k=8, max_missing_thres=0.33)
This function imputes missing values following this steps:
- One-to-one model based imputation for strongly related variables.
- Cluster based hot deck imputation where clusters are obtained as the connected components of an undirected graph G=(V,E), where V is the set of variables and E the pairs of variables with mutual information above a predefined threshold.
- Records with a proportion of missing values above a predefined threshold are discarded to ensure the quality of the hot deck imputation.
- Hot deck imputation for the remaining missing values considering all variables together.
Parameters
df
:pandas.DataFrame
- Data frame containing the data with potential missing values.
num_vars
:str
,list
,pandas.Series
, ornumpy.array
- Numerical variable name(s).
cat_vars
:str
,list
,pandas.Series
, ornumpy.array
- Categorical variable name(s).
{num,mixed,cat}_pair_kws
:dict
, default=None
- Additional keyword arguments to pass to compute imputation pairs for one-to-one model based imputation, namely:
- For numerical pairs,
corr_thres
andmethod
for setting the correlation coefficient threshold and method. By default,corr_thres=0.7
andmethod='pearson'
. - For mixed-type pairs,
np2_thres
for setting the a threshold on partial eta square with 0.14 as default value. - For categorical pairs,
mi_thres
for setting a threshold on mutual information score. By default,mi_thres=0.6
.
- For numerical pairs,
- Additional keyword arguments to pass to compute imputation pairs for one-to-one model based imputation, namely:
graph_thres
:float
, default=0.05- Threshold to determine if two variables are similar based on mutual information score, and therefore are an edge of the graph from which variable clusters are derived.
k
:int
, default=8- Number of neighbors to consider in hot deck imputation.
max_missing_thres
:float
, default=0.33- Maximum proportion of missing values per observation allowed before final general hot deck imputation - see step 3 of the missing value imputation methodology in section 2.1.
Returns
final_pairs
:pandas.DataFrame
- DataFrame with pairs of highly correlated variables (
var1
: variable with values to impute;var2
: variable to be used as independent variable for model-based imputation), together proportion of missing values of variablesvar1
andvar2
.
- DataFrame with pairs of highly correlated variables (
plot_imputation_distribution_assessment()
plot_imputation_distribution_assessment(df_prior, df_posterior, imputed_vars, sample_frac=1.0, prior_kws=None, posterior_kws=None, output_path=None, savefig_kws=None)
Plots a distribution comparison of each variable with imputed variables, before and after imputation.
Parameters
df_prior
:pandas.DataFrame
- DataFrame containing the data before imputation.
df_posterior
:pandas.DataFrame
- DataFrame containing the data after imputation.
imputed_vars
:list
- List of variables with imputed variables.
sample_frac
: float, default=1.0- If < 1 a random sample of every pair of variables will be plotted.
{prior,posterior}_kws
:dict
, default=None
- Additional keyword arguments to pass to the kdeplot.
output_path
:str
, default=None
- Path to save figure as image.
savefig_kws
:dict
, default=None
- Save figure options.
7.i.b. Outliers
remove_outliers()
remove_outliers(df, variables, iforest_kws=None)
Removes outliers using the Isolation Forest algorithm.
Parameters
df
:pandas.DataFrame
- DataFrame containing the data.
variables
:list
- Variables with potential outliers.
iforest_kws
:dict
, default=None
- IsolationForest algorithm hyperparameters.
Returns
- df_inliers :
pandas.DataFrame
- DataFrame with inliers (i.e. observations that are not outliers).
- df_outliers :
pandas.DataFrame
- DataFrame with outliers.
7.ii. Dimensionality reduction
All the functionality of this module is encapsulated in the DimensionalityReduction
class so that the original data, the instances of the models used, and any other relevant information is self-maintained and always accessible.
DimensionalityReduction class
dr = DimensionalityReduction(df, num_vars=None, cat_vars=None, num_algorithm='pca', cat_algorithm='mca', num_kwargs=None, cat_kwargs=None)
Parameter | Type | Description |
---|---|---|
df |
pandas.DataFrame |
Data table containing the data with the original variables |
num_vars |
string , list , pandas.Series , or numpy.array |
Numerical variable name(s) |
cat_vars |
string , list , pandas.Series , or numpy.array |
Categorical variable name(s) |
num_algorithm |
string |
Algorithm to be used for dimensionality reduction of numerical variables. By default, PCA is used. The current version also supports SPCA |
cat_algorithm |
string |
Algorithm to be used for dimensionality reduction of categorical variables. By default, MCA is used. The current version doesn’t support other algorithms |
num_kwargs |
dictionary |
Additional keyword arguments to pass to the model used for numerical variables |
cat_kwargs |
dictionary |
Additional keyword arguments to pass to the model used for categorical variables |
Attribute | Type | Description |
n_components_ |
int |
Final number of extracted components |
min_explained_variance_ratio_ |
float |
Minimum explained variance ratio. By default, 0.5 |
num_trans_ |
pandas.DataFrame |
Extracted components from numerical variables |
cat_trans_ |
pandas.DataFrame |
Extracted components from categorical variables |
num_components_ |
list |
List of names assigned to the extracted components from numerical variables |
cat_components_ |
list |
List of names assigned to the extracted components from categorical variables |
pca_ |
sklearn.decomposition.PCA |
PCA instance used to speed up some computations and for comparison purposes |
Methods
transform()
transform(self, n_components=None, min_explained_variance_ratio=0.5)
Transforms a DataFrame df to a lower dimensional space.
num_main_contributors(()
num_main_contributors(self, thres=0.5, n_contributors=None, dim_idx=None, component_description=None, col_description=None, output_path=None)
Computes the original numerical variables with the strongest relation to the derived variable(s) (measured as Pearson correlation coefficient).
cat_main_contributors(()
cat_main_contributors(self, thres=0.14, n_contributors=None, dim_idx=None, component_description=None, col_description=None, output_path=None)
Computes the original categorical variables with the strongest relation to the derived variable(s)(measured as correlation ratio).
cat_main_contributors_stats()
cat_main_contributors_stats(self, thres=0.14, n_contributors=None, dim_idx=None, output_path=None)
Computes for every categorical variable's value, the mean and std of the derived variables that are strongly related to the categorical variable (based on the correlation ratio)).
plot_num_explained_variance()
plot_num_explained_variance(self, thres=0.5, plots='all', output_path=None, savefig_kws=None)
Plot the explained variance (ratio, cumulative, and/or normalized) for numerical variables.
plot_cat_explained_variance()
plot_cat_explained_variance(self, thres=0.5, plots='all', output_path=None, savefig_kws=None)
Plot the explained variance (ratio, cumulative, and/or normalized) for categorical variables.
plot_num_main_contributors()
plot_num_main_contributors(self, thres=0.5, n_contributors=5, dim_idx=None, output_path=None, savefig_kws=None)
Plot main contributors (original variables with the strongest relation with derived variables) for every derived variable.
plot_cat_main_contributor_distribution()
plot_cat_main_contributor_distribution(self, thres=0.14, n_contributors=None, dim_idx=None, output_path=None, savefig_kws=None)
Plot main contributors (original variables with the strongest relation with derived variables) for every derived variable.
7.iii. Clustering
The Clustering
class encapsulates all the functionality of this module and stores the data, the instances of the algorithms used, and other relevant information so it is always accessible.
Clustering class
cl = Clustering(df, algorithms='kmeans', normalize=False)
Parameter | Type | Description |
---|---|---|
df |
pandas.DataFrame |
Data frame containing the data to be clustered |
algorithms |
instance or list of instances |
Algorithm instances to be used for clustering. They must implement the fit and set_params methods |
normalize |
bool |
Whether to apply data normalization for fair comparisons between variables. In case dimensionality reduction is applied beforehand, normalization should not be applied |
Attribute | Type | Description |
dimensions_ |
list |
List of columns of they input data frame |
instances_ |
dict |
Pairs of algorithm name and its instance |
metric_ |
string |
The cluster validation metric used. Four metrics available: ['inertia', 'davies_bouldin_score', 'silhouette_score', 'calinski_harabasz_score'] |
optimal_config_ |
tuple |
Tuple with the optimal configuration for clustering containing the algorithm name, number of clusters, and value of the chosen validation metric |
scores_ |
dict |
Pairs of algorithm name and a list of values of the chosen validation metric for a cluster range |
Methods
compute_clusters()
compute_clusters(self, n_clusters=None, metric='inertia', max_clusters=10, prefix=None, weights=None)
Calculates clusters. If more than one algorithm is passed in the class constructor, first, the optimal number of clusters is computed for each algorithm based on the metric passed to the method. Secondly, the algorithm that provides the best performance for the corresponding optimal number of clusters is selected. Therefore, the result shows the clusters calculated with the best performing algorithm based on the criteria explained above.
describe_clusters()
describe_clusters(self, df_ext=None, variables=None, cluster_filter=None, statistics=['mean', 'median', 'std'], output_path=None)
Describes clusters based on internal or external continuous variables.
For categorical variables use describe_clusters_cat()
.
describe_clusters_cat()
describe_clusters_cat(self, cat_array, cat_name, order=None, normalize=False, use_weights=False, output_path=None)
Describes clusters based on external categorical variables. The result is a contingency table.
For continuous variables use describe_clusters()
.
compare_cluster_means_to_global_means()
compare_cluster_means_to_global_means(self, df_original=None, output_path=None)
For every cluster and every internal variable, the relative difference between the intra-cluster mean and the global mean.
anova_tests()
anova_tests(self, df_test=None, vars_test=None, cluster_filter=None, output_path=None)
Runs ANOVA tests for a given set of continuous variables (internal or external) to test dependency with clusters.
chi2_test()
chi2_test(self, cat_array)
Runs Chi-squared tests for a given categorical variable to test dependency with clusters.
plot_score_comparison()
plot_score_comparison(self, output_path=None, savefig_kws=None)
Plots the comparison in performance between the different clustering algorithms.
plot_optimal_components_normalized()
plot_optimal_components_normalized(self, output_path=None, savefig_kws=None)
Plots the normalized curve used for computing the optimal number of clusters.
plot_clustercount()
plot_clustercount(self, use_weights=False, output_path=None, savefig_kws=None)
Plots a bar plot with cluster counts.
plot_cluster_means_to_global_means_comparison()
plot_cluster_means_to_global_means_comparison(self, use_weights= False, df_original=None, xlabel=None, ylabel=None,
levels=[-0.50, -0.32, -0.17, -0.05, 0.05, 0.17, 0.32, 0.50],
output_path=None, savefig_kws=None)
Plots the normalized curve used for computing the optimal number of clusters.
plot_distribution_comparison_by_cluster()
plot_distribution_comparison_by_cluster(self, df_ext=None, xlabel=None, ylabel=None, output_path=None, savefig_kws=None)
Plots the violin plots per cluster and continuous variables of interest to understand differences in their distributions by cluster.
plot_clusters_2D()
plot_clusters_2D(self, coor1, coor2, use_weights=False, style_kwargs=dict(), output_path=None, savefig_kws=None)
Plots two 2D plots:
- A scatter plot styled by the categorical variable hue
.
- A 2D plot comparing cluster centroids and optionally the density area.
plot_cat_distribution_by_cluster()
plot_cat_distribution_by_cluster(self, cat_array, cat_label, order=None, cluster_label=None, use_weights=False, output_path=None, savefig_kws=None)
Plots the relative contingency table of the clusters with a categorical variable as a stacked bar plot.
7.iv. Classifier
The functionality of this module is encapsulated in the Classifier
class, which is also responsible for storing the original data, the instances of the models used, and any other relevant information.
Classifier class
classifier = Classifier(df, predictor_cols, target, num_cols=None, cat_cols=None)
Parameter | Type | Description |
---|---|---|
df |
pandas.DataFrame |
Data frame containing the data |
predictor_cols |
list of string |
List of columns to use as predictors |
target |
numpy.array or list |
Values of the target variable |
num_cols |
list |
List of numerical columns from predictor_cols |
cat_cols |
list |
List of categorical columns from predictor_cols |
Attribute | Type | Description |
filtered_features_ |
list |
List of columns of the input data frame |
labels_ |
list |
List of class labels |
model_ |
Instance of TransformerMixin and BaseEstimator from sklearn.base |
Trained classifier |
X_train_ |
numpy.array |
Train split of predictors |
X_test_ |
numpy.array |
Test split of predictors |
y_train_ |
numpy.array |
Train split of target |
y_test_ |
numpy.array |
Test split of target |
grid_result_ |
sklearn.model_selection.GridSearchCV |
Instance of fitted estimator for hyperparameter tuning |
Methods
train_model()
train_model(self, model=None, feature_selection=True, features_to_keep=[],
feature_selection_model=None, hyperparameter_tuning=False, param_grid=None,
train_size=0.8, balance_classes=False)
This method trains a classification model.
By default, it uses XGBoost, but any other estimator (instance of scikit-learn.Estimator
) can be used.
The building process consists of three main steps:
- Feature Selection (optional)
Feature removing highly correlated variables using a classification model and SHAP values to determine which to keep, and Recursive Feature Elimination with Cross-Validation (RFECV) on the remaining features.
- Hyperparameter tuning (optional)
Runs grid search with cross-validation for hyperparameter tuning. Note the parameter grid must be passed.
- Model training
Trains a classification model with the selected features and hyperparameters. By default, an XGBoost classifier will be trained.
Note both hyperparameter tuning and model training are run on a train set. Train-test split is performed
using sklearn.model_selection.train_test_split
.
hyperparameter_tuning_metrics()
hyperparameter_tuning_metrics(self, output_path=None)
This method returns the average and standard deviation of the cross-validation runs for every hyperparameter combination in hyperparameter tuning.
confusion_matrix()
confusion_matrix(self, test=True, sum_stats=True, output_path=None)
This method returns the confusion matrix of the classification model.
classification_report()
classification_report(self, test=True, output_path=None)
This method returns the sklearn.metrics.classification_report
in pandas.DataFrame
format.
This report contains the intra-class metrics precision, recall and F1-score, together with the global accuracy, and macro average and weighted average of the three intra-class metrics.
plot_shap_importances()
plot_shap_importances(self, n_top=7, output_path=None, savefig_kws=None)
Plots shap importance values, calculated as the combined average of the absolute values of the shap values for all classes.
plot_shap_importances_beeswarm()
plot_shap_importances_beeswarm(self, class_id, class_name=None, n_top=10, output_path=None, savefig_kws=None)
Plots a summary of shap values for a specific class of the target variable. This uses shap beeswarm plot.
plot_confusion_matrix()
plot_confusion_matrix(self, test=True, sum_stats=True, output_path=None, savefig_kws=None)
This function makes a pretty plot of an sklearn Confusion Matrix cf using a Seaborn heatmap visualization.
plot_roc_curves()
plot_roc_curves(self, test=True, labels=None, output_path=None, savefig_kws=None)
Plots ROC curve for every class.
8. Citing
Alvarez-Garcia, M., Ibar-Alonso, R., Arenas-Parra, M. (2024). A comprehensive framework for explainable cluster analysis. Information Sciences, 663 , 120282, https://doi.org/10.1016/j.ins.2024.120282
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file clust_learn-0.2.6.tar.gz
.
File metadata
- Download URL: clust_learn-0.2.6.tar.gz
- Upload date:
- Size: 62.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0fb3621875e852334353e0c685a519d1d952dc7e7852269e8f8dbca3b9e68a4e |
|
MD5 | 344ba69582ae48044189ea384c6cb42c |
|
BLAKE2b-256 | f6e0124a496f6d74a511e8fb7f420639ebbb64e00a585d2047551e14cfb98e6a |
File details
Details for the file clust_learn-0.2.6-py3-none-any.whl
.
File metadata
- Download URL: clust_learn-0.2.6-py3-none-any.whl
- Upload date:
- Size: 65.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c0fdeb7353cd8b5a21289f41231d816e4cce8ecc0b47eb3625b7bd72736bf14b |
|
MD5 | 944a0c72e916b596395710ff1fc59703 |
|
BLAKE2b-256 | 14f6396fc8e501716f0fcea2aef9bbcbb85347914018ed7fd34cd13a848b1b9a |