cmdbtools: A command line tools for CMDB variant browser.
Project description
Introduction
China is the most populous country and the second largest economy in the world. However, the construction of Chinese genome database is in slow progress. At present, among the world’s large-scale international and national genome sequencing projects, such as 1KGP, Genomics England, Genome of the Netherlands, ExAC are mostly biased towards the construction of a genomic baseline for European populations. In those projects, while the sample size goes up to hundreds of thousands for samples with european ancestry in those database, the sequen- cing Chinese samples is no more than a thousand.
Since a high-quality genomic baseline database serves as an important control for medical research and population-oriented clinical and drug applications, the Chinese millionome database (CMDB) is developed to fill the gap.
The Chinese Millionome Database(CMDB) is a unique large-scale Chinese genomics database produced by BGI and hosted in the National GeneBank. The CMDB delivers peridical and useful variation information and scientific insights derived from the analysis of millions of Chinese sequencing data. The results aim to promote genetic research and precision medicine actions in China.
The delivering information includes any of detected variants and the corresponding allele frequency, annotation, frequency comparison to the global populations from existing databases, etc.
Benchmarking detail and methods are described in our Cell paper:
Liu, S. et al.(2018) Genomic Analyses from Non-invasive Prenatal Testing Reveal Genetic Associations, Patterns of Viral Infections, and Chinese Population History. Cell, 2, 347-359. DOI:https://doi.org/10.1016/j.cell.2018.08.016
cmdbtools is a command line tool for this CMDB variants browser.
Quick start
CMDB variant browser allows authorized access its data through an Genomics API and cmdbtools is a convenient command line tools for this purpose.
Installation
Install the released version by pip:
pip install cmdbtools
You may instead want to install the development version from github, by running:
pip install git+git://github.com/ShujiaHuang/cmdbtools.git#egg=cmdbtools
Setup
Please enable your API access from Profile in CMDB browser before using cmdbtools.
Login
Login with cmdbtools by using CMDB API access key, which could be found from Profile->Genomics API if you have apply for it.
cmdbtools login -k your-genomics-api-key
If everything goes smoothly, means you can use CMDB as one of your varaints database in command line mode.
Logout
Logout cmdbtools by simply run the command below:
cmdbtool logout
Query a single variant
Variants could be retrieved from CMDB by using query-varaint.
Run cmdbtools query-variant -h to see all available options. There’re two different ways to retrive variants.
One is to use -c and -p parameters for single variant, the other way uses -l for multiple positions.
Here are examples for quering single varaint by chromosome name and position.
cmdbtools query-variant -c chr17 -p 41234470
and you will get something looks like below:
##fileformat=VCFv4.2
##FILTER=<ID=LowQual,Description="Low quality">
##INFO=<ID=CMDB_AN,Number=1,Type=Integer,Description="Number of Alleles in Samples with Coverage from CMDB_hg19_v1.0">
##INFO=<ID=CMDB_AC,Number=A,Type=Integer,Description="Alternate Allele Counts in Samples with Coverage from CMDB_hg19_v1.0">
##INFO=<ID=CMDB_AF,Number=A,Type=Float,Description="Alternate Allele Frequencies from CMDB_hg19_v1.0">
##INFO=<ID=CMDB_FILTER,Number=A,Type=Float,Description="Filter from CMDB_hg19_v1.0">
#CHROM POS ID REF ALT QUAL FILTER INFO
17 41234470 rs1060915&CD086610&COSM4416375 A G 74.38 PASS CMDB_AF=0.361763,CMDB_AC=4625,CMDB_AN=12757
Quering multiple varants.
A list of variants could be retrieved from CMDB by using the parameters of -l when apply by query-varaint.
cmdbtools query-variant -l positions.list > result.vcf
Format for positions.list, could be a mixture of chrom position and chrom start end, even with or without chr in the chromosome ID column:
#CHROM POS
chr22 17662378
chr22 17662408
22 17662442
22 17662444
22 17662699
22 17662729
22 17690496
22 17662353 17663671
22 17669209 17669357
result.vcf is VCF format and looks like below:
##fileformat=VCFv4.2
##FILTER=<ID=LowQual,Description="Low quality">
##INFO=<ID=CMDB_AN,Number=1,Type=Integer,Description="Number of Alleles in Samples with Coverage from CMDB_hg19_v1.0">
##INFO=<ID=CMDB_AC,Number=A,Type=Integer,Description="Alternate Allele Counts in Samples with Coverage from CMDB_hg19_v1.0">
##INFO=<ID=CMDB_AF,Number=A,Type=Float,Description="Alternate Allele Frequencies from CMDB_hg19_v1.0">
##INFO=<ID=CMDB_FILTER,Number=A,Type=Float,Description="Filter from CMDB_hg19_v1.0">
#CHROM POS ID REF ALT QUAL FILTER INFO
chr22 17662699 rs58754958 A G 59.86 PASS CMDB_AF=0.031047,CMDB_AC=441,CMDB_AN=13553
chr22 17662793 rs7289170 A G 64.23 PASS CMDB_AF=0.050419,CMDB_AC=842,CMDB_AN=16135
chr22 17669245 rs116020027 G T 30.3 PASS CMDB_AF=0.003453,CMDB_AC=43,CMDB_AN=11280
chr22 17690409 rs362129 G A 32.3 PASS CMDB_AF=0.065438,CMDB_AC=686,CMDB_AN=10236
Actrually you can use -c -p and -l simultaneously if you like. And positions.list could just contain one single position.
cmdbtools query-variant -c 22 -p 46616520 -l positions.list > result.vcf
Annotate your VCF files
Annotate your VCF file with CMDB by using cmdbtools annotate command.
Download a list of example variants in VCF format from multiple_samples.vcf.gz. To annotate this list of variants with allele frequences from CMDB, you can just run the following command in Linux or Mac OS.
cmdbtools annotate -i multiple_samples.vcf.gz > multiple_samples_CMDB.vcf
It’ll take about 2 or 3 minutes to complete 3,000+ variants’ annotation. Then you will get 4 new fields with the information of CMDB in VCF INFO:
CMDB_AF: Allele frequece in CMDB;
CMDB_AN: Coverage in CMDB in population level;
CMDB_AC: Allele count in population level in CMDB;
CMDB_FILTER: Filter status in CMDB.
##fileformat=VCFv4.2
##ALT=<ID=NON_REF,Description="Represents any possible alternative allele at this location">
##FILTER=<ID=LowQual,Description="Low quality">
##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as listed">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed">
##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes">
##INFO=<ID=BaseQRankSum,Number=1,Type=Float,Description="Z-score from Wilcoxon rank sum test of Alt Vs. Ref base qualities">
##reference=file:///home/tools/hg19_reference/ucsc.hg19.fasta
##INFO=<ID=CMDB_AN,Number=1,Type=Integer,Description="Number of Alleles in Samples with Coverage from CMDB_hg19_v1.0">
##INFO=<ID=CMDB_AC,Number=A,Type=Integer,Description="Alternate Allele Counts in Samples with Coverage from CMDB_hg19_v1.0">
##INFO=<ID=CMDB_AF,Number=A,Type=Float,Description="Alternate Allele Frequencies from CMDB_hg19_v1.0">
##INFO=<ID=CMDB_FILTER,Number=A,Type=Float,Description="Filter from CMDB_hg19_v1.0">
#CHROM POS ID REF ALT QUAL FILTER INFO
chr21 9413612 . C T 6906.62 . AC=25;AF=0.313;AN=80;BaseQRankSum=0.425;CMDB_AC=2459;CMDB_AF=0.207525;CMDB_AN=11834;CMDB_FILTER=PASS
chr21 9413629 . C T 8028.88 . AC=30;AF=0.375;AN=80;BaseQRankSum=-1.200e+00;CMDB_AC=6906;CMDB_AF=0.305445;CMDB_AN=22406;CMDB_FILTER=PASS
chr21 9413700 . G A 7723.82 . AC=30;AF=0.375;AN=80;BaseQRankSum=-9.000e-02
chr21 9413735 . C A 10121.72 . AC=35;AF=0.438;AN=80;BaseQRankSum=0.977;CMDB_AC=2385;CMDB_AF=0.283965;CMDB_AN=8382;CMDB_FILTER=PASS
chr21 9413839 . C T 8192.08 . AC=28;AF=0.350;AN=80;BaseQRankSum=-5.200e-02
chr21 9413840 . C A 11514.35 . AC=38;AF=0.475;AN=80;BaseQRankSum=0.253
chr21 9413870 . T C 7390.60 . AC=26;AF=0.325;AN=80;BaseQRankSum=-4.270e-01
chr21 9413880 . T A 146.96 . AC=1;AF=0.013;AN=80;BaseQRankSum=2.12;ClippingRankSum=0.00
chr21 9413909 . G A 1131.78 . AC=10;AF=0.125;AN=80;BaseQRankSum=0.549;CMDB_AC=209;CMDB_AF=0.01507;CMDB_AN=13683;CMDB_FILTER=PASS
chr21 9413913 . C T 8120.65 . AC=28;AF=0.350;AN=80;BaseQRankSum=-4.390e-01;CMDB_AC=2870;CMDB_AF=0.205597;CMDB_AN=13955;CMDB_FILTER=PASS
chr21 9413945 . T C 43787.68 . AC=71;AF=0.888;AN=80;BaseQRankSum=0.089
chr21 9413995 . C T 9632.44 . AC=29;AF=0.363;AN=80;BaseQRankSum=0.747
chr21 9413996 . A G 41996.48 . AC=71;AF=0.888;AN=80;BaseQRankSum=-1.242e+00;CMDB_AC=3308;CMDB_AF=0.688533;CMDB_AN=4790;CMDB_FILTER=PASS
chr21 9414003 . T C 4256.54 . AC=19;AF=0.238;AN=80;BaseQRankSum=-6.030e-01
Citation
If you use CMDB in your scientific publication, we would appreciate citation this paper:
Siyang Liu, Shujia Huang. et al.(2018) Genomic Analyses from Non-invasive Prenatal Testing Reveal Genetic Associations, Patterns of Viral Infections, and Chinese Population History. Cell, 2, 347-359. DOI:https://doi.org/10.1016/j.cell.2018.08.016
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file cmdbtools-1.0.6.2.tar.gz
.
File metadata
- Download URL: cmdbtools-1.0.6.2.tar.gz
- Upload date:
- Size: 12.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/2.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9d123b15a9acfd33ff2470719671743d1d911b332f24fda651d1f2c307fd5e4e |
|
MD5 | 8a4d09f5bbc87f0ab5b9dedc12f98f00 |
|
BLAKE2b-256 | 286adfa89c857c452893d229a81d4c7704b81eb166c706ff54e1c7fd5d18e436 |