Skip to main content

cNMF Solution Network Space

Project description

cNMF-SNS logo


cNMF-SNS: powerful factorization-based multi-omics integration toolkit

version badge PyPI Latest Release Conda Latest Release Documentation status Downloads License

Authors: Ted Verhey, Heewon Seo, Sorana Morrissy

cNMF-SNS (consensus Non-negative Matrix Factorization Solution Network Space) is a Python package enabling mosaic integration of bulk, single-cell, and spatial expression data between and within datasets. Datasets can have partially overlapping features (eg. genes) as well as non-overlapping features. cNMF provides a robust, unsupervised deconvolution of each dataset into gene expression programs (GEPs). Network-based integration of GEPs enables flexible integration of many datasets across assays (eg. Protein, RNA-Seq, scRNA-Seq, spatial expression) and patient cohorts.

Communities with GEPs from multiple datasets can be annotated with dataset-specific annotations to facilitate interpretation.

⚡Main Features

Here are just a few of the things that cNMF-SNS does well:

  • Identifies interpretable, non-negative programs at multiple resolutions
  • Mosaic integration does not require subsetting features/genes to a shared or overdispersed subset
  • Ideal for incremental integration (adding datasets one at a time) since deconvolution is performed independently on each dataset
  • Integration performs well even when the datasets have mismatched features (eg. Microarray, RNA-Seq, Proteomics) or sparsity (eg single-cell vs bulk RNA-Seq and ATAC-Seq)
  • Two interfaces: command-line interface for rapid data exploration and python interface for extensibility and flexibility

🔧 Install

☁️ Public Release

Install the package with conda (in an isolated conda environment)

conda create -n cnmfsns -c conda-forge cnmfsns
conda activate cnmfsns

✨ Latest version from GitHub

Before installing cNMF-SNS using pip, it is recommended to first set up a separate conda environment and have conda manage as many dependencies as possible.

conda create --name cnmfsns -c conda-forge python=3.10 anndata pandas numpy scipy matplotlib upsetplot httplib2 tomli tomli-w click pygraphviz python-igraph pyyaml scikit-learn fastcluster scanpy pyyaml
conda activate cnmfsns
pip install git+https://github.com/MorrissyLab/cNMF-SNS.git

📖 Documentation

🗐 Data guidelines

cNMF-SNS can factorize a wide variety of datasets, but will work optimally in these conditions:

  • Use untransformed (raw) data where possible.
  • For single-cell or spatial RNA-Seq data, use feature counts, not TPM or other log-transformed values.

📓 Python interface

To get started, sample proteomics datasets and a Jupyter notebook tutorial is available here.

Detailed API reference can be found on ReadTheDocs.

⌨️ Command line interface

See the command line interface documentation.

💭 Getting Help

For errors arising during use of cNMF-SNS, create and browse issues in the GitHub "issues" tab.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cnmfsns-1.7.0.tar.gz (62.5 kB view details)

Uploaded Source

Built Distribution

cnmfsns-1.7.0-py3-none-any.whl (65.0 kB view details)

Uploaded Python 3

File details

Details for the file cnmfsns-1.7.0.tar.gz.

File metadata

  • Download URL: cnmfsns-1.7.0.tar.gz
  • Upload date:
  • Size: 62.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/6.6.0 pkginfo/1.9.6 requests/2.29.0 requests-toolbelt/0.9.1 tqdm/4.65.0 CPython/3.10.10

File hashes

Hashes for cnmfsns-1.7.0.tar.gz
Algorithm Hash digest
SHA256 058ed95afff6d9990089510df1db3b0b855a1d2935ab92ab0b94cfbcf689d7c8
MD5 e8f1a89b2bdd89ff480e17a91dfa6819
BLAKE2b-256 c724ecda55facb541000ea7f0f776ea0aa309da9dcd75d78107a2c4593a75345

See more details on using hashes here.

File details

Details for the file cnmfsns-1.7.0-py3-none-any.whl.

File metadata

  • Download URL: cnmfsns-1.7.0-py3-none-any.whl
  • Upload date:
  • Size: 65.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/6.6.0 pkginfo/1.9.6 requests/2.29.0 requests-toolbelt/0.9.1 tqdm/4.65.0 CPython/3.10.10

File hashes

Hashes for cnmfsns-1.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1492828a556dc7b548e60f9ed16e20518ba4ea74457095c8eeae9c791248d845
MD5 42f2940bc6fc6804f587b15e54738848
BLAKE2b-256 6e04e594ef2efe913d2f8b08adc6ef4e206cfd37fc28ebacdc3126911c184e25

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page