Skip to main content

A small example package

Project description

BMI calculation

The following are the objective,

  1. Calculate the BMI (Body Mass Index) using Formula 1, BMI Category and Health risk from Input data (person_detail.json) of the person and add them as 3 new columns.

         Formula 1 - BMI
         BMI(kg/m2) = mass(kg) / height(m)2
    
  2. Count the total number of overweight people using ranges in the column BMI Category.

     BMI Category------------BMI Range (kg/m2)------------Health risk
    
     Underweight------------  18.4 and below ------------Malnutrition risk
    
     Normal weight------------ 18.5 - 24.9------------------Low risk
    
     Overweight---------------- 25 - 29.9 ----------------Enhanced risk
    
     Moderately obese---------- 30 - 34.9 ---------------- Medium risk
    
     Severely obese ----------- 35 - 39.9  ---------------- High risk
    
     Very severely obese ---- 40 and above ---------------Very high risk
    

There are few major functions used in the whole program,

  1. 'fitness_calc.py' (in 'src' directory) has the functions to calculate BMI, Categorization and the count of Overweight persons.
  2. 'utility.py' is created to make functions generic. It has the file handling functions.
  3. 'test.py' has the function to unit test the code.
  4. 'main.py' is used to get the desired output from the input data.
  5. 'person_detail.json' has the input data containing persons' Gender, Height and Weight.
  6. 'Final_BMI_Results.csv' will give the desired out in .csv format.
  7. 'setup.py' has the required package details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file code-20220213-pinakpanigogoi-pinak47-0.0.2.tar.gz.

File metadata

  • Download URL: code-20220213-pinakpanigogoi-pinak47-0.0.2.tar.gz
  • Upload date:
  • Size: 2.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for code-20220213-pinakpanigogoi-pinak47-0.0.2.tar.gz
Algorithm Hash digest
SHA256 17491dc234f87338b40e9ab7c19fea3f7939aa6b7ce2fb24f1770de749ad33fd
MD5 36888dcb531ae470ed47bc32a1ec27a1
BLAKE2b-256 be90ccb50b13ff7eed929088183f4c5b056e597b40f9645e0fc487112840d88d

See more details on using hashes here.

File details

Details for the file code_20220213_pinakpanigogoi_pinak47-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: code_20220213_pinakpanigogoi_pinak47-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 3.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for code_20220213_pinakpanigogoi_pinak47-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 e82d1ea03c5b3e64ae769eb7df326595cd9234a3e0ea0d754b8071776ec524b4
MD5 0093b41b540bf687745ce3cc70e05de5
BLAKE2b-256 0e03ed71d8cea511114744dafc96c5f5a3f99370d54be44bc41549dbf55614ad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page