Ask coding questions directly from the terminal
Project description
codequestion: Ask coding questions directly from the terminal
codequestion is a Python application that allows a user to ask coding questions directly from the terminal. Many developers will have a web browser window open while they develop and run web searches as questions arise. codequestion attempts to make that process faster so you can focus on development.
The default model for codequestion is built off the Stack Exchange Dumps on archive.org. codequestion runs locally against a pre-trained model using data from Stack Exchange. No network connection is required once installed. The model executes similarity queries to find similar questions to the input query.
An example of how codequestion works is shown below:
Installation
The easiest way to install is via pip and PyPI
pip install codequestion
You can also install codequestion directly from GitHub. Using a Python Virtual Environment is recommended.
pip install git+https://github.com/neuml/codequestion
Python 3.6+ is supported
Downloading a model
Once codequestion is installed, a model needs to be downloaded.
python -m codequestion.download
The model will be stored in ~/.codequestion/
The model can also be manually installed if the machine doesn't have direct internet access. Pre-trained models are pulled from the GitHub release page
unzip cqmodel.zip ~/.codequestion
It is possible for codequestion to be customized to run against a custom question-answer repository and more will come on that in the future. At this time, only the Stack Exchange model is supported.
Running queries
The fastest way to run queries is to start a codequestion shell
codequestion
A prompt will come up. Queries can be typed directly into the console.
Tech overview
The following is an overview of how this project works.
Processing the raw data dumps
The raw 7z XML dumps from Stack Exchange are processed through a series of steps (see building a model). Only highly scored questions with answers are retrieved for storage in the model. Questions and answers are consolidated into a single SQLite file called questions.db. The schema for questions.db is below.
questions.db schema
Id INTEGER PRIMARY KEY
Source TEXT
SourceId INTEGER
Date DATETIME
Tags TEXT
Question TEXT
QuestionUser TEXT
Answer TEXT
AnswerUser TEXT
Reference TEXT
Indexing
codequestion builds a sentence embeddings index for questions.db. Each question in the questions.db schema is tokenized and resolved to word embeddings. The word embedding model is a custom fastText model built on questions.db. Once each token is converted to word embeddings, a weighted sentence embedding is created. Word embeddings are weighed using a BM25 index over all the tokens in the repository, with one important modification. Tags are used to boost the weights of tag tokens.
Once questions.db is converted to a collection of sentence embeddings, they are normalized and stored in Faiss, which allows for fast similarity searches.
Querying
codequestion tokenizes each query using the same method as during indexing. Those tokens are used to build a sentence embedding. That embedding is queried against the Faiss index to find the most similar questions.
Building a model
The following steps show how to build a codequestion model using Stack Exchange archives.
This is not necessary if using the pre-trained models from the GitHub release page
1.) Download files from Stack Exchange: https://archive.org/details/stackexchange
2.) Place selected files into a directory structure like shown below (current process requires all these files).
- stackexchange/ai/ai.stackexchange.com.7z
- stackexchange/android/android.stackexchange.com.7z
- stackexchange/apple/apple.stackexchange.com.7z
- stackexchange/arduino/arduino.stackexchange.com.7z
- stackexchange/askubuntu/askubuntu.com.7z
- stackexchange/avp/avp.stackexchange.com.7z
- stackexchange/codereview/codereview.stackexchange.com.7z
- stackexchange/cs/cs.stackexchange.com.7z
- stackexchange/datascience/datascience.stackexchange.com.7z
- stackexchange/dba/dba.stackexchange.com.7z
- stackexchange/devops/devops.stackexchange.com.7z
- stackexchange/dsp/dsp.stackexchange.com.7z
- stackexchange/raspberrypi/raspberrypi.stackexchange.com.7z
- stackexchange/reverseengineering/reverseengineering.stackexchange.com.7z
- stackexchange/scicomp/scicomp.stackexchange.com.7z
- stackexchange/security/security.stackexchange.com.7z
- stackexchange/serverfault/serverfault.com.7z
- stackexchange/stackoverflow/stackoverflow.com-Posts.7z
- stackexchange/stats/stats.stackexchange.com.7z
- stackexchange/superuser/superuser.com.7z
- stackexchange/unix/unix.stackexchange.com.7z
- stackexchange/vi/vi.stackexchange.com.7z
- stackexchange/wordpress/wordpress.stackexchange.com.7z
3.) Run the ETL process
python -m codequestion.etl.stackexchange.execute stackexchange
This will create the file ~/.codequestion/models/stackexchange/questions.db
4.) Build word vectors
Currently, the model is using BM25 + fastText for indexing.
python -m codequestion.vectors
This will create the file ~/.codequestion/vectors/stackexchange-300d.magnitude
5.) Build index
python -m codequestion.index
After this step, the index is created and all necessary files are ready to query.
Model accuracy
The following sections show test results for various word vector/scoring combinations. SE 300d word vectors with BM25 scoring does the best against this dataset. Even with the reduced vocabulary of < 1M Stack Exchange questions, SE 300d - BM25 does reasonably well against the STS Benchmark.
StackExchange Query
Models scored using Mean Reciprocal Rank (MRR)
Model | MRR |
---|---|
SE 300d - BM25 | 76.3 |
ParaNMT - BM25 | 67.4 |
FastText - BM25 | 66.1 |
BM25 | 49.5 |
TF-IDF | 45.9 |
STS Benchmark
Models scored using Pearson Correlation
Model | Supervision | Dev | Test |
---|---|---|---|
ParaNMT - BM25 | Train | 82.6 | 78.1 |
FastText - BM25 | Train | 79.8 | 72.7 |
SE 300d - BM25 | Train | 77.0 | 69.1 |
Testing
To reproduce the tests above, you need to download the test data into ~/.codequestion/test
mkdir -p ~/.codequestion/test/stackexchange
wget https://raw.githubusercontent.com/neuml/codequestion/master/test/stackexchange/query.txt -P ~/.codequestion/test/stackexchange
wget http://ixa2.si.ehu.es/stswiki/images/4/48/Stsbenchmark.tar.gz
tar -C ~/.codequestion/test -xvzf Stsbenchmark.tar.gz
python -m codequestion.evaluate -s test
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for codequestion-1.1.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5f62f005a48789be757c9b5d47542ae567cc9cae31541a7e727e298a001a451b |
|
MD5 | 1809d2493fa1e1d0926e98024c4a68a9 |
|
BLAKE2b-256 | 21a3d1a68b83698770876da1924193a2fdc163565bde71caa63c5a2718a12cc4 |