Skip to main content

Distributed Neural Network implementation on COINSTAC.

Project description

coinstac-dinunet

Distributed Neural Network implementation on COINSTAC.

PyPi version YourActionName Actions Status versions

pip install coinstac-dinunet

Install supported pytorch & torchvision binaries in your device/docker ecosystem:

torch==1.5.1+cu92
torchvision==0.6.1+cu92

Highlights:

1. Handles multi-network/complex training schemes.
2. Automatic data splitting/k-fold cross validation.
3. Automatic model checkpointing.
4. GPU enabled local sites.
5. Customizable metrics(w/Auto serialization between nodes) to work with any schemes.
6. We can integrate any custom reduction and learning mechanism by extending coinstac_dinunet.distrib.reducer/learner.
7. Realtime profiling each sites by specifying in compspec file(see dinune_fsv example below for details). 
...

DINUNET

Full working examples

  1. FreeSurfer volumes classification.
  2. VBM 3D images classification.

General use case:

imports

from coinstac_dinunet import COINNDataset, COINNTrainer, COINNLocal
from coinstac_dinunet.metrics import COINNAverages, Prf1a
from coinstac_dinunet.io import 

1. Define Data Loader

class MyDataset(COINNDataset):
    def __init__(self, **kw):
        super().__init__(**kw)
        self.labels = None

    def load_index(self, id, file):
        data_dir = self.path(id, 'data_dir') # data_dir comes from inputspecs.json
        ...
        self.indices.append([id, file])

    def __getitem__(self, ix):
        id, file = self.indices[ix]
        data_dir = self.path(id, 'data_dir') # data_dir comes from inputspecs.json
        label_dir = self.path(id, 'label_dir') # label_dir comes from inputspecs.json
        ...
        # Logic to load, transform single data item.
        ...
        return {'inputs':.., 'labels': ...}

2. Define Trainer

class MyTrainer(COINNTrainer):
    def __init__(self, **kw):
        super().__init__(**kw)

    def _init_nn_model(self):
        self.nn['model'] = MYModel(in_size=self.cache['input_size'], out_size=self.cache['num_class'])

    def iteration(self, batch):
        inputs, labels = batch['inputs'].to(self.device['gpu']).float(), batch['labels'].to(self.device['gpu']).long()

        out = F.log_softmax(self.nn['model'](inputs), 1)
        loss = F.nll_loss(out, labels)
        _, predicted = torch.max(out, 1)
        score = self.new_metrics()
        score.add(predicted, labels)
        val = self.new_averages()
        val.add(loss.item(), len(inputs))
        return {'out': out, 'loss': loss, 'averages': val,
                'metrics': score, 'prediction': predicted}

3. Define remote node in remote.py

from coinstac_dinunet.metrics import Prf1a
from  coinstac_dinunet import COINNRemote
class MyRemote(COINNRemote):
    def _set_monitor_metric(self):
        self.cache['monitor_metric'] = 'f1', 'maximize'

    def _set_log_headers(self):
        self.cache['log_header'] = 'Loss|Accuracy,F1'

    def _new_metrics(self):
        return Prf1a()

4. Define the entry point

from coinstac_dinunet import COINNLocal
from coinstac_dinunet.io import COINPyService


class Server(COINPyService):

    def get_local(self, msg) -> callable:
        pretrain_args = {'epochs': 51, 'batch_size': 16}
        local = COINNLocal(cache=self.cache, input=msg['data']['input'],
                           pretrain_args=None, batch_size=16,
                           state=msg['data']['state'], epochs=21, patience=21, task_id='fsv_quick')
        return local

    def get_remote(self, msg) -> callable:
        remote = MyRemote(cache=self.cache, input=msg['data']['input'],
                          state=msg['data']['state'])
        return remote

    def get_local_compute_args(self, msg) -> list:
        """
        MyDataHandle and MyLearner are optional
            - MyDataHandle: Can have any custom data loading logic.
            - MyLearner: Can have any custom learning technique 
                when paired with MyReducer argument in get_local_compute_args.
        """
        return [MyTrainer, MyDataset, MyDataHandle, MyLearner]


server = Server(verbose=False)
server.start()

Define custom metrics

Default arguments:

  • task_name: str = None, Name of the task. [Required]
  • mode: str = None, Eg. train/test [Required]
  • batch_size: int = 4
  • epochs: int = 21
  • learning_rate: float = 0.001
  • gpus: _List[int] = None, Eg. [0], [1], [0, 1]...
  • pin_memory: bool = True, if cuda available
  • num_workers: int = 0
  • load_limit: int = float('inf'), Limit on dataset to load for debugging purpose.
  • pretrained_path: str = None, Path to pretrained weights
  • patience: int = 5, patience to end training by monitoring validation scores.
  • load_sparse: bool = False, Load each data item in separate loader to reconstruct images from patches, if needed.
  • num_folds: int = None, Number of k-folds.
  • split_ratio: _List[float] = (0.6, 0.2, 0.2), Exclusive to num_folds.
  • Directly passed parameters in coinstac_dinunet.nodes.COINNLocal, args passed through inputspec will override the defaults in the same order.
  • Custom data splits can be provided in the path specified by split_dir for each sites in their respective inputspecs file. This is mutually exclusive to both num_folds and split_ratio.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

coinstac-dinunet-2.0.7.tar.gz (33.7 kB view details)

Uploaded Source

File details

Details for the file coinstac-dinunet-2.0.7.tar.gz.

File metadata

  • Download URL: coinstac-dinunet-2.0.7.tar.gz
  • Upload date:
  • Size: 33.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for coinstac-dinunet-2.0.7.tar.gz
Algorithm Hash digest
SHA256 ea2885fcd0de8013175f01a755c34bd519a1144a09b19b8d07dbc667b286dca4
MD5 13e6b9673bf1515c05b2aeabe739f17d
BLAKE2b-256 3f459c2e01877ffb50860bfeb069e272b067012073b66837dc478951163bbc53

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page