Skip to main content

No project description provided

Project description

Compositional Linear Algebra (CoLA)

Documentation tests codecov PyPI version Paper

CoLA is a framework for scalable linear algebra, automatically exploiting the structure often found in machine learning problems and beyond. CoLA supports both PyTorch and JAX.

Installation

pip install cola-ml

Features in CoLA

  • Large scale linear algebra routines for solve(A,b), eig(A), logdet(A), exp(A), trace(A), diag(A), sqrt(A).
  • Provides (user extendible) compositional rules to exploit structure through multiple dispatch.
  • Has memory-efficient autodiff rules for iterative algorithms.
  • Works with PyTorch or JAX, supporting GPU hardware acceleration.
  • Supports operators with complex numbers and low precision.
  • Provides linear algebra operations for both symmetric and non-symmetric matrices.

See https://cola.readthedocs.io/en/latest/ for our full documentation and many examples.

Quick start guide

  1. LinearOperators. The core object in CoLA is the LinearOperator. You can add and subtract them +, -, multiply by constants *, /, matrix multiply them @ and combine them in other ways: kron, kronsum, block_diag etc.
import jax.numpy as jnp
import cola

A = cola.ops.Diagonal(jnp.arange(5) + .1)
B = cola.ops.Dense(jnp.array([[2., 1.], [-2., 1.1], [.01, .2]]))
C = B.T @ B
D = C + 0.01 * cola.ops.I_like(C)
E = cola.ops.Kronecker(A, cola.ops.Dense(jnp.ones((2, 2))))
F = cola.ops.BlockDiag(E, D)

v = jnp.ones(F.shape[-1])
print(F @ v)
[0.2       0.2       2.2       2.2       4.2       4.2       6.2
 6.2       8.2       8.2       7.8121004 2.062    ]
  1. Performing Linear Algebra. With these objects we can perform linear algebra operations even when they are very big.
print(cola.linalg.trace(F))
Q = F.T @ F + 1e-3 * cola.ops.I_like(F)
b = cola.linalg.inv(Q) @ v
print(jnp.linalg.norm(Q @ b - v))
print(cola.linalg.eig(F)[0][:5])
print(cola.sqrt(A))
31.2701
0.0010193728
[ 2.0000000e-01+0.j  0.0000000e+00+0.j  2.1999998e+00+0.j
 -1.1920929e-07+0.j  4.1999998e+00+0.j]
diag([0.31622776 1.0488088  1.4491377  1.7606816  2.0248456 ])

For many of these functions, if we know additional information about the matrices we can annotate them to enable the algorithms to run faster.

Qs = cola.SelfAdjoint(Q)
%timeit cola.linalg.inv(Q) @ v
%timeit cola.linalg.inv(Qs) @ v
  1. JAX and PyTorch. We support both ML frameworks.
import torch

A = cola.ops.Dense(torch.Tensor([[1., 2.], [3., 4.]]))
print(cola.linalg.trace(cola.kron(A, A)))

import jax.numpy as jnp
A = cola.ops.Dense(jnp.array([[1., 2.], [3., 4.]]))
print(cola.linalg.trace(cola.kron(A, A)))
tensor(25.)
25.0

and both support autograd (and jit):

from jax import grad, jit, vmap

def myloss(x):
    A = cola.ops.Dense(jnp.array([[1., 2.], [3., x]]))
    return jnp.ones(2) @ cola.linalg.inv(A) @ jnp.ones(2)


g = jit(vmap(grad(myloss)))(jnp.array([.5, 10.]))
print(g)
[-0.06611571 -0.12499995]

Citing us

If you use CoLA, please cite the following paper:

Andres Potapczynski, Marc Finzi, Geoff Pleiss, and Andrew Gordon Wilson. "CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra." 2023.

@article{potapczynski2023cola,
  title={{CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra}},
  author={Andres Potapczynski and Marc Finzi and Geoff Pleiss and Andrew Gordon Wilson},
  journal={arXiv preprint arXiv:2309.03060},
  year={2023}
}

Features implemented

Linear Algebra inverse eig diag trace logdet exp sqrt f(A) SVD pseudoinverse
Implementation
LinearOperators Diag BlockDiag Kronecker KronSum Sparse Jacobian Hessian Fisher Concatenated Triangular FFT Tridiagonal
Implementation
Annotations SelfAdjoint PSD Unitary
Implementation

Contributing

See the contributing guidelines docs/CONTRIBUTING.md for information on submitting issues and pull requests.

CoLA is Apache 2.0 licensed.

Support and contact

Please raise an issue if you find a bug or slow performance when using CoLA.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cola-ml-0.0.3.tar.gz (2.8 MB view details)

Uploaded Source

Built Distribution

cola_ml-0.0.3-py3-none-any.whl (75.3 kB view details)

Uploaded Python 3

File details

Details for the file cola-ml-0.0.3.tar.gz.

File metadata

  • Download URL: cola-ml-0.0.3.tar.gz
  • Upload date:
  • Size: 2.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for cola-ml-0.0.3.tar.gz
Algorithm Hash digest
SHA256 ab406cdd1358699ca91bca55377ce036b0b4d19224e83f5f4b8603949e6a11de
MD5 233012cad5c178858ce6edb142d7ffcb
BLAKE2b-256 ddee1ad2849329296bb53ebc1a385df26a0ca2a6f2cc57cd04bf1d6606887181

See more details on using hashes here.

Provenance

File details

Details for the file cola_ml-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: cola_ml-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 75.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for cola_ml-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 025e73316eab40e3412e2276c0c4b8f9cde679058f56c60e37cda5167dbea14f
MD5 17f59d3f6c5c6e9961620d3ad43e2062
BLAKE2b-256 9c7dcf74e596e1d2824721a5ae00e1967d2fc1c939418fe082e4de8018e2afb7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page