Skip to main content

No project description provided

Project description

Compose

"Build better training examples in a fraction of the time."

CircleCI Codecov ReadTheDocs PyPI Version StackOverflow PyPI Downloads


Compose is a machine learning tool for automated prediction engineering. It allows you to structure prediction problems and generate labels for supervised learning. An end user defines an outcome of interest by writing a labeling function, then runs a search to automatically extract training examples from historical data. Its result is then provided to Featuretools for automated feature engineering and subsequently to EvalML for automated machine learning. The workflow of an applied machine learning engineer then becomes:


Compose


By automating the early stage of the machine learning pipeline, our end user can easily define a task and solve it. See the documentation for more information.

Install

Compose is available on PyPI and Conda-forge for Python 3.6 or later.

pip

To install from PyPI, run the command:

pip install composeml

conda

To install from Conda-forge, run the command:

conda install -c conda-forge composeml

Example

Will a customer spend more than 300 in the next hour of transactions?

In this example, we automatically generate new training examples from a historical dataset of transactions.

import composeml as cp
df = cp.demos.load_transactions()
df = df[df.columns[:7]]
df.head()
transaction_id session_id transaction_time product_id amount customer_id device
298 1 2014-01-01 00:00:00 5 127.64 2 desktop
10 1 2014-01-01 00:09:45 5 57.39 2 desktop
495 1 2014-01-01 00:14:05 5 69.45 2 desktop
460 10 2014-01-01 02:33:50 5 123.19 2 tablet
302 10 2014-01-01 02:37:05 5 64.47 2 tablet

First, we represent the prediction problem with a labeling function and a label maker.

def total_spent(ds):
    return ds['amount'].sum()

label_maker = cp.LabelMaker(
    target_entity="customer_id",
    time_index="transaction_time",
    labeling_function=total_spent,
    window_size="1h",
)

Then, we run a search to automatically generate the training examples.

label_times = label_maker.search(
    df.sort_values('transaction_time'),
    num_examples_per_instance=2,
    minimum_data='2014-01-01',
    drop_empty=False,
    verbose=False,
)

label_times = label_times.threshold(300)
label_times.head()
customer_id time total_spent
1 2014-01-01 00:00:00 True
1 2014-01-01 01:00:00 True
2 2014-01-01 00:00:00 False
2 2014-01-01 01:00:00 False
3 2014-01-01 00:00:00 False

We now have labels that are ready to use in Featuretools to generate features.

Support

The Innovation Labs open source community is happy to provide support to users of Compose. Project support can be found in three places depending on the type of question:

  1. For usage questions, use Stack Overflow with the composeml tag.
  2. For bugs, issues, or feature requests start a Github issue.
  3. For discussion regarding development on the core library, use Slack.

Citing Compose

Compose is built upon a newly defined part of the machine learning process — prediction engineering. If you use Compose, please consider citing this paper: James Max Kanter, Gillespie, Owen, Kalyan Veeramachaneni. Label, Segment,Featurize: a cross domain framework for prediction engineering. IEEE DSAA 2016.

BibTeX entry:

@inproceedings{kanter2016label,
  title={Label, segment, featurize: a cross domain framework for prediction engineering},
  author={Kanter, James Max and Gillespie, Owen and Veeramachaneni, Kalyan},
  booktitle={2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)},
  pages={430--439},
  year={2016},
  organization={IEEE}
}

Acknowledgements

The open source development has been supported in part by DARPA's Data driven discovery of models program (D3M).

Innovation Labs

Innovation Labs

Compose has been developed and open sourced by Innovation Labs. We developed Compose to enable flexible definition of the machine learning task. To see the other open source projects we're working on visit Innovation Labs.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

composeml-0.5.1.tar.gz (29.4 kB view details)

Uploaded Source

Built Distribution

composeml-0.5.1-py3-none-any.whl (35.6 kB view details)

Uploaded Python 3

File details

Details for the file composeml-0.5.1.tar.gz.

File metadata

  • Download URL: composeml-0.5.1.tar.gz
  • Upload date:
  • Size: 29.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9

File hashes

Hashes for composeml-0.5.1.tar.gz
Algorithm Hash digest
SHA256 4656dcdca06f6877e9f50d6a08a62fc628d7f643b37e85d67068643be5610be0
MD5 22f109ea282ffecaca5c91ab696137c7
BLAKE2b-256 351fdfc7162748f2168deca5da1186eb5b65458a870143c6156c6ba203e27697

See more details on using hashes here.

File details

Details for the file composeml-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: composeml-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 35.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9

File hashes

Hashes for composeml-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d8727eb4446bc9e0ecce01a96dec5515130e01f30554d2594d64ad8216bcea98
MD5 68d27f2e3c5467e19ec395bb87b71c8e
BLAKE2b-256 20f98983f73e7834a3a3f3eb3e1c5cc9ebfc44ebe73adcfeff7b451deb706c16

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page