Skip to main content

Use Composio to get an array of tools with your LlamaIndex agent.

Project description

🦙 Using Composio With LlamaIndex

Integrate Composio with llamaindex agents to allow them to interact seamlessly with external apps & data sources, enhancing their functionality and reach.

Goal

  • Star a repository on GitHub using natural language commands through a llamaindex Agent.

Installation and Setup

Ensure you have the necessary packages installed and connect your GitHub account to allow your agents to utilize GitHub functionalities.

# Install Composio llamaindex package
pip install composio-llamaindex

# Connect your GitHub account
composio-cli add github

# View available applications you can connect with
composio-cli show-apps

Usage Steps

1. Import Base Packages

Prepare your environment by initializing necessary imports from llamaindex and setting up your agent.

from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage
from llama_index.core.agent import FunctionCallingAgentWorker

import dotenv
from llama_index.core.tools import FunctionTool

# Load environment variables from .env
dotenv.load_dotenv()

llm = OpenAI(model="gpt-4-turbo")

2. Fetch GitHub llamaindex Tools via Composio

Access GitHub tools provided by Composio for llamaindex.

from composio_llamaindex import App, Action, ComposioToolSet

# Get All the tools
composio_toolset = ComposioToolSet()
tools = composio_toolset.get_actions(
    actions=[Action.GITHUB_STAR_A_REPOSITORY_FOR_THE_AUTHENTICATED_USER]
)
print(tools)

3. Prepare the Agent

Configure the agent to perform tasks such as starring a repository on GitHub.

prefix_messages = [
    ChatMessage(
        role="system",
        content=(
            "You are now a integration agent, and what  ever you are requested, you will try to execute utilizing your toools."
        ),
    )
]

agent = FunctionCallingAgentWorker(
    tools=tools,
    llm=llm,
    prefix_messages=prefix_messages,
    max_function_calls=10,
    allow_parallel_tool_calls=False,
    verbose=True,
).as_agent()

4. Check Response

Validate the execution and response from the agent to ensure the task was completed successfully.

response = agent.chat("Hello! I would like to star a repo composiohq/composio on GitHub")
print("Response:", response)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

composio_llamaindex-0.5.38.tar.gz (4.0 kB view details)

Uploaded Source

Built Distribution

composio_llamaindex-0.5.38-py3-none-any.whl (4.4 kB view details)

Uploaded Python 3

File details

Details for the file composio_llamaindex-0.5.38.tar.gz.

File metadata

  • Download URL: composio_llamaindex-0.5.38.tar.gz
  • Upload date:
  • Size: 4.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for composio_llamaindex-0.5.38.tar.gz
Algorithm Hash digest
SHA256 fc2785865606865dc6ae1e3bb3dfa2a0ea43f2d04b1055ef241ea710178998a3
MD5 13f5e9b786189513bdbc08797d15ab57
BLAKE2b-256 a6af92ed098b4948a73f9e13d78713636cad2ca32176ed137ea0e949ea78cbcb

See more details on using hashes here.

File details

Details for the file composio_llamaindex-0.5.38-py3-none-any.whl.

File metadata

File hashes

Hashes for composio_llamaindex-0.5.38-py3-none-any.whl
Algorithm Hash digest
SHA256 0e5a147b1f60325c9c13f59f44c07855ba3d225a5cd519628d3f518247817833
MD5 518b870f75d7f01931e49d4dbda7ecb8
BLAKE2b-256 796b5a877f9a9735578eb72aecbb4d55082dc4c0b95ac230579947f326c122db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page