Skip to main content

Coniferous forests for better machine learning

Project description

coniferest

PyPI version Documentation Status Test Workflow Build and publish wheels

Package for active anomaly detection with isolation forests, made by SNAD collaboration.

It includes:

  • IsolationForest - reimplementation of scikit-learn's isolation forest with much better scoring performance.
  • AADForest - reimplementation of Active Anomaly detection algorithm with isolation forests from Shubhomoy Das' ad_examples package with better performance, much less code and more flexible dependencies.
  • PineForest - our own active learning model based on the idea of tree filtering.

Install the package with pip install coniferest.

See the documentation for the Tutorial.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

coniferest-0.0.10.tar.gz (19.3 MB view details)

Uploaded Source

Built Distributions

coniferest-0.0.10-cp311-cp311-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

coniferest-0.0.10-cp311-cp311-win32.whl (9.0 MB view details)

Uploaded CPython 3.11 Windows x86

coniferest-0.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

coniferest-0.0.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

coniferest-0.0.10-cp311-cp311-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

coniferest-0.0.10-cp311-cp311-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

coniferest-0.0.10-cp310-cp310-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

coniferest-0.0.10-cp310-cp310-win32.whl (9.0 MB view details)

Uploaded CPython 3.10 Windows x86

coniferest-0.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

coniferest-0.0.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

coniferest-0.0.10-cp310-cp310-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

coniferest-0.0.10-cp310-cp310-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

coniferest-0.0.10-cp39-cp39-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

coniferest-0.0.10-cp39-cp39-win32.whl (9.0 MB view details)

Uploaded CPython 3.9 Windows x86

coniferest-0.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

coniferest-0.0.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

coniferest-0.0.10-cp39-cp39-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

coniferest-0.0.10-cp39-cp39-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

coniferest-0.0.10-cp38-cp38-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

coniferest-0.0.10-cp38-cp38-win32.whl (9.1 MB view details)

Uploaded CPython 3.8 Windows x86

coniferest-0.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

coniferest-0.0.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

coniferest-0.0.10-cp38-cp38-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

coniferest-0.0.10-cp38-cp38-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

coniferest-0.0.10-cp37-cp37m-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

coniferest-0.0.10-cp37-cp37m-win32.whl (9.1 MB view details)

Uploaded CPython 3.7m Windows x86

coniferest-0.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

coniferest-0.0.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

coniferest-0.0.10-cp37-cp37m-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file coniferest-0.0.10.tar.gz.

File metadata

  • Download URL: coniferest-0.0.10.tar.gz
  • Upload date:
  • Size: 19.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for coniferest-0.0.10.tar.gz
Algorithm Hash digest
SHA256 e68bf38b760d8e3aa86ce2bd91478a180f15873cfec2a1c0a84c4129783453ad
MD5 50d0e792acd1a03caf8aaf267ee9b583
BLAKE2b-256 7d199953ecfda737ea54b3c2d12cd2bcc8b58db30937d3e8c80162c0fa4d4adf

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c861c62bce8ac59ab7a6c019732f93db8e2fb30b182381868c307081aaa93856
MD5 52cdb3e92164f41efdb7700e3905be20
BLAKE2b-256 2ce323acc1eb72ca12d03ed9a9df3e59b94c627b9227fa1c2a9ce4e9dc1d99f9

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp311-cp311-win32.whl.

File metadata

  • Download URL: coniferest-0.0.10-cp311-cp311-win32.whl
  • Upload date:
  • Size: 9.0 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for coniferest-0.0.10-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d5086d4e926f1a8da4951ca2de1d6e837771d9a12cb3be2a674d45cb65555fcb
MD5 c679f4a19958bf0dcfcb3061466f9f0a
BLAKE2b-256 7dc988f39dc58260b90b667993fead2fc47a00827c3ee16cabbc76c3ca71c176

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39c0982326f73c9bf76de23c4be31ab8029af1a90c96365f89e7004c352032d0
MD5 92fc1cd75976ff01ecfe632e7e668e4f
BLAKE2b-256 8d1b4ad39295c46893c42fc701b379e28426c99c4d2ea99f045018b87e87917d

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 19cfa88db08d173a507b6e1b688528fa6223cfac08cb4489e6a3c886da7a8b43
MD5 ecb7df3eb76f56e4a46d73ad0e34f799
BLAKE2b-256 99226a5b37aac4d3effee1b2a2ffd5a4129125af83c5da8bbbf33c48b201b429

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 23f9fffef3b5a05a51de758cd4c26c64953d9f2d396dd2bc07bc2d16d48c2619
MD5 4b4bb30f9d224d137b0e3e598a865c08
BLAKE2b-256 bd77d0db0ef12dfaa12029a54618a77f1cbe222efc974a99c150cd3dd0dca2bc

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 928349aae66dd0631b82d2c62091a2a808aa194dac1ca93bf72b344ed3163627
MD5 4b81f98434c97ccc9bc5f8830c22f3c7
BLAKE2b-256 8323019cab527799d577ff7303ed36d8575ffde46a979263ce03059120b80ffc

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c40e71a4d7e9983d274dfbd7b77b3739237da380808adbf8684aa8b930f8a962
MD5 52af8fe62f76d88136f678d0b2987dcf
BLAKE2b-256 a785d9ecb802ee91c2d35e1d9c97635edea8515100b5a6e7314bc4da5b6934e5

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp310-cp310-win32.whl.

File metadata

  • Download URL: coniferest-0.0.10-cp310-cp310-win32.whl
  • Upload date:
  • Size: 9.0 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for coniferest-0.0.10-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c24edd59a81ca6f160e1d5d567d0e7f1a9f03c987c25ec06c59b12ff7c454976
MD5 ac090d997140463866ef23fd89dc3e5c
BLAKE2b-256 780e14a980a2b1438ed9d67a3d377b009583c2105115e18a240665ace59165f0

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c22714def7e675056b724663cc34fbac1239c13c4f97cd7fe9fe7ad97724378a
MD5 0639442918cfd3cf65a89f787b34f90f
BLAKE2b-256 31622a826fd0aeace4497f0a591a612b5d57e36775ad8e829a7b5c97e219736f

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7111d42f2dbf1103b9575f25f041f03a6e85253390dc41877694c308b289bd3b
MD5 2e0957a6a90c837c2e19f64babef7441
BLAKE2b-256 576392b33c689989ff372dd4f8a53bcd374a8212f812e281aa3e3361c4708f9c

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 76a20ec77a7505de4ec20feeb2345fd84953bd7c192e2d3206ff98f76d73ac39
MD5 d7e37ff39ee4b9e07864721534efaeb9
BLAKE2b-256 3b7d1ea10c9eba1389b675b88d59f0839ffc1d0ec8ab129e0ddcd8f0306d42ee

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fc3c3ff98a633322190fca57a103a5771dc9e46d401e77f94923bcd5d90f766e
MD5 878d237b95783d197a93f0ed623a5523
BLAKE2b-256 62c0d14b6ceb62c397890a9d5ba3ceb4b79c2646d0297e8e8deb07d9a0e0ada3

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 59b95e7b77c024edd14100b2a9eb902916387ea0119b5be95d233a452453a1ca
MD5 f0449e1e925129941ab0ffb3a7b66522
BLAKE2b-256 5beb19605ad242304553e37463fe5520935f56116ecb5f86f31b03008aa008eb

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp39-cp39-win32.whl.

File metadata

  • Download URL: coniferest-0.0.10-cp39-cp39-win32.whl
  • Upload date:
  • Size: 9.0 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for coniferest-0.0.10-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c0479d81821e17db7425a8bdadef6c464325e29589b839d7dea5f05db0e03b5d
MD5 181a7765b5ba8fa013b99f0af071c927
BLAKE2b-256 6e2cf616b03f440c369fec7411362b67d5c536ce32a5a88a2d3ed4e6cc82d774

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7e989a34f359a05ff63404ae9329279a3a1fe436863f37f2de86f2e05c67feb
MD5 78e8fe98af8ff8c38d2a138e55c83e82
BLAKE2b-256 31ef139f649df9a813a9967d6ead01c3ba8a41da136e406c83123e58cdf47579

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79c06851ec82609f348b5e04228ac087272729c3eaef67af0b1fbd5536a27e68
MD5 13fb35fdaea63f42ce18e0bff0ef8368
BLAKE2b-256 92bf384202e1483ea7bf4c14d38bd129dab0bd4fa5a97f929ab7c5f1666ed89d

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 47a6129f345a6a6913d333bd60cec11b4ee1717c2d94ace6b2aaf920045f300c
MD5 62e662c6a4150228b99e7ad769543a45
BLAKE2b-256 933ebd0f4ea735d66de44b2c8930dc6d552bb06a7972b7cdf2464809a752147a

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7dfe8b70f49442dbed4f7b9bb7ca6567e10f98ce91aa1650f322c21e4f428ee2
MD5 0b467ce7c911563a72199d0e990037aa
BLAKE2b-256 5567a867aaa4fd21ca7c7528807972a4467a8a55b7580f33e882f190a6137182

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e781c2d46a957be4d9fd411267d7740902f4141099b7e0e0cef6fa43fdf8d5ad
MD5 2ee34009339bf269b1abdd9cf323109e
BLAKE2b-256 a11a154bc202411d9eeebd1618f0c4ac7d8d02e736388e5cd149344e78197ebc

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp38-cp38-win32.whl.

File metadata

  • Download URL: coniferest-0.0.10-cp38-cp38-win32.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for coniferest-0.0.10-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e83038b37decdef1084d4158c4aba3a4b8415be0c8a897cdb71b1ae47298970b
MD5 2d9dc282580be6b42fb692108039064d
BLAKE2b-256 d77454061d179c33dacf0dfc4e5b42b32ad27cfc2eb22b6500524c4859bfd5f5

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d584df4d80dd14fa2109c8b830f6bf7e752a0fc6fdff46ff7ddc7b3dd30fdbff
MD5 a02758a5e78d48305c90811b1ec617ce
BLAKE2b-256 efcc6ff241a77ffc614a97d09d689f9ac61f0cfa38c6b78302c0cecb8f1c86f3

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 439f55582a8bee7291f836faf768d9cdd84f7d990a7dc1a7aefd848daa1f4b96
MD5 e88fb645fe071307434b4338b95c98c5
BLAKE2b-256 8c5d3ca3f462039e4d9c90861a93d4043176eb4dc46982430359e717a085c7cb

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af2fd33201aa6913b6dcd49fb164e23466c4524addfc0d5b07e204c07d721842
MD5 37dafd2abe6681fee9b4ce455124fce3
BLAKE2b-256 7601189fc64f83e2d9d0e884f6170b8ceaf0b9b37fb050374f9af0fce703740b

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 772ba1a86186e1736728ea6869dc6b7178818cb21250571440773d4b4681926f
MD5 9f1be978be9b33a37adaf21f38e8f729
BLAKE2b-256 4955252a19d78d979730aad43b4403323323813d3b80a95568ab83561d5078e3

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6c2033cb8bf04e410f7ac07bd7b5b77000a8c4e264ab5d6822efdf1ece18ad0f
MD5 22c8760c0eba1c4c5f88907050e42b7f
BLAKE2b-256 c284493c19bfbbb6bed0bb5fb7763892164d30511eefc709054a11287ed2fdf2

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp37-cp37m-win32.whl.

File metadata

  • Download URL: coniferest-0.0.10-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for coniferest-0.0.10-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 190ea59947966bde5e5ed046ec8fa870ed90b3e14620b6a859f9bc549182581e
MD5 f1c3bbdfcfc951eb80f9d7618c2c0aa5
BLAKE2b-256 158e15ca7d7b821f71a92466f43de74c0f40e64754424e635c692b6298588155

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eea1294842d6278c7862e7c4fbfdbb29db648d276a797eaf4cbc827e710ee4b1
MD5 9a7bc20c1c094d278821fb15c2c8a8ef
BLAKE2b-256 61871a058936bbd0651d144dc35edc70ce088c0b7917ea5cb4a3293c52d02545

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff207606b3488bf57987f513d7b1fcd32c23ff9a45fb7363b360bff85112c2b9
MD5 354bcc13cd9011167c5995a4e6fb2323
BLAKE2b-256 35ec96f739c7d9ce5a9eaa245243ec4fe8de928f26bd172807374ad1563dbbea

See more details on using hashes here.

File details

Details for the file coniferest-0.0.10-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.10-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9a987a073d24129a16dc2a4930a44f101d9a0537cdf75205d1e1e8d4c03bd3ac
MD5 9b7c4ea3ed5a51ac5fec49bcb13572d2
BLAKE2b-256 34daf4192ec913c53db32f96172ac674aebcea91be4102deaac1d7cabfe232d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page