Skip to main content

Coniferous forests for better machine learning

Project description

coniferest

PyPI version Documentation Status Test Workflow Build and publish wheels pre-commit.ci status

Package for active anomaly detection with isolation forests, made by SNAD collaboration.

It includes:

  • IsolationForest - reimplementation of scikit-learn's isolation forest with much better scoring performance due to the use of Cython and multi-threading (the latter is not currently available on macOS).
  • AADForest - reimplementation of Active Anomaly detection algorithm with isolation forests from Shubhomoy Das' ad_examples package with better performance, much less code and more flexible dependencies.
  • PineForest - our own active learning model based on the idea of tree filtering.

Install the package with pip install coniferest.

See the documentation for the Tutorial.

Installation

The project is using Cython for performance and requires compilation. However, binary wheels are available for Linux, macOS and Windows, so you can install the package with pip install coniferest on these platforms with no build-time dependencies. Currently multithreading is not available in macOS ARM wheels, but you can install the package from the source to enable it, see instructions below.

If your specific platform is not supported, or you need a development version, you can install the package from the source. To do so, clone the repository and run pip install . in the root directory.

Note, that we are using OpenMP for multi-threading, which is not available on macOS with the Apple LLVM Clang compiler. You still can install the package with Apple LLVM, but it will be single-threaded. Alternatively, you can install the package with Clang from Homebrew (brew install llvm libomp) or GCC (brew install gcc), which will enable multi-threading. In this case you will need to set environment variables CC=gcc-12 (or whatever version you have installed) or CC=$(brew --preifx llvm)/bin/clang and CONIFEREST_FORCE_OPENMP_ON_MACOS=1.

Development

You can install the package in editable mode with pip install -e .[dev] to install the development dependencies.

Linters and formatters

This project makes use of pre-commit hooks, you can install them with pre-commit install. Pre-commit CI is used for continuous integration of the hooks, they are applied to every pull request, and CI is responsible for auto-updating the hooks.

Testing and benchmarking

We use tox to build and test the package in isolated environments with different Python versions. To run tests locally, install tox with pip install tox and run tox in the root directory. We configure tox to skip long tests.

The project uses pytest as a testing framework. Tests are located in the tests directory, and can be run with pytest tests in the root directory. By default, all tests are run, but you can select specific tests with -k option, e.g. pytest tests -k test_onnx.test_onnx_aadforest. You can also deselect a specific group of tests with -m option, e.g. pytest tests -m'not long', see pyproject.toml for the list of markers.

We use pytest-benchmark for benchmarking. You can run benchmarks with pytest tests --benchmark-enable -m benchmark in the root directory. Most of the benchmarks have n_jobs fixture set to 1 by default, you can change it with --n_jobs option. You can adjust the minimum number of iterations with --benchmark-min-rounds and maximum execution time per benchmark with --benchmark-max-time (note that the latter can be exceeded if the minimum number of rounds is not reached). See pyproject.toml for the default benchmarking options. You can make a snapshot the current benchmark result with --benchmark-save=NAME or with --benchmark-autosave, and compare benchmarks with pytest-benchmark compare command.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

coniferest-0.0.15.tar.gz (230.6 kB view details)

Uploaded Source

Built Distributions

coniferest-0.0.15-cp313-cp313-win_amd64.whl (344.8 kB view details)

Uploaded CPython 3.13 Windows x86-64

coniferest-0.0.15-cp313-cp313-win32.whl (323.6 kB view details)

Uploaded CPython 3.13 Windows x86

coniferest-0.0.15-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

coniferest-0.0.15-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

coniferest-0.0.15-cp313-cp313-macosx_11_0_arm64.whl (359.0 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

coniferest-0.0.15-cp313-cp313-macosx_10_13_x86_64.whl (370.9 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

coniferest-0.0.15-cp312-cp312-win_amd64.whl (344.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

coniferest-0.0.15-cp312-cp312-win32.whl (323.5 kB view details)

Uploaded CPython 3.12 Windows x86

coniferest-0.0.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

coniferest-0.0.15-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

coniferest-0.0.15-cp312-cp312-macosx_11_0_arm64.whl (360.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

coniferest-0.0.15-cp312-cp312-macosx_10_13_x86_64.whl (372.5 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

coniferest-0.0.15-cp311-cp311-win_amd64.whl (345.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

coniferest-0.0.15-cp311-cp311-win32.whl (323.9 kB view details)

Uploaded CPython 3.11 Windows x86

coniferest-0.0.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

coniferest-0.0.15-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

coniferest-0.0.15-cp311-cp311-macosx_11_0_arm64.whl (358.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

coniferest-0.0.15-cp311-cp311-macosx_10_9_x86_64.whl (369.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

coniferest-0.0.15-cp310-cp310-win_amd64.whl (344.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

coniferest-0.0.15-cp310-cp310-win32.whl (324.3 kB view details)

Uploaded CPython 3.10 Windows x86

coniferest-0.0.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

coniferest-0.0.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

coniferest-0.0.15-cp310-cp310-macosx_11_0_arm64.whl (358.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

coniferest-0.0.15-cp310-cp310-macosx_10_9_x86_64.whl (369.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

coniferest-0.0.15-cp39-cp39-win_amd64.whl (345.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

coniferest-0.0.15-cp39-cp39-win32.whl (324.8 kB view details)

Uploaded CPython 3.9 Windows x86

coniferest-0.0.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

coniferest-0.0.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

coniferest-0.0.15-cp39-cp39-macosx_11_0_arm64.whl (359.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

coniferest-0.0.15-cp39-cp39-macosx_10_9_x86_64.whl (370.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file coniferest-0.0.15.tar.gz.

File metadata

  • Download URL: coniferest-0.0.15.tar.gz
  • Upload date:
  • Size: 230.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for coniferest-0.0.15.tar.gz
Algorithm Hash digest
SHA256 94482eeeadb8d4be4e9b10265643b11e6ef78c86d321f6854b1a576aa1ac14b4
MD5 97e3e88ff48c7ba9d8c14525814989a8
BLAKE2b-256 970687e542c6cb156fcca481938ae9b94d47f72aecaa0c29e5f0d9bca324938c

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 804eab74f923032e0b7d4018bcecfac97a863a10b41fde87254008a103e4b9fd
MD5 f9d445cd14db60d744360be51a87b7ed
BLAKE2b-256 43a59550ba1e1b401f10dabb38a601c40b883b2bbff48c26abda00e376604df5

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp313-cp313-win32.whl.

File metadata

  • Download URL: coniferest-0.0.15-cp313-cp313-win32.whl
  • Upload date:
  • Size: 323.6 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for coniferest-0.0.15-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 d50884da44114a1e5c9672633469a2f3e17598107492b82011e74d74a9fccc8d
MD5 4d71ff73e0ffc5e917ac4cbd7e8012e2
BLAKE2b-256 1d91181fad14cf625dc0c3ed0f23089a7f44cbca297fbf370f5300041c1829b6

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b62cd78c335eda0dc8b4eb629fda809567645688265ff5f34987c92a16d3a19
MD5 41bad3a87d10932758416acfd2b41513
BLAKE2b-256 4cb2f1ed37cf6ba4637259fdb35b32b0599fd8cfcc3000a2f3e786945d3446b3

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9938d032a6e94ebdbf09979f8d5a55e2d0a80f4130c00abec2ee15aac12501ba
MD5 ef50fdafc7d8a8b37634db271200a12e
BLAKE2b-256 29dcba995a82f8994548e1daa6dfb42cc8c7136a4170619beda21f4e0d9ab51a

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c11ff18c0d5db0598513a9895f15918fdfa0dae32e317190acf9cbed0c20975
MD5 b70228323b228e14e58fd041ae5defdb
BLAKE2b-256 93d875dac4433fd310ce6e15eada8999ba02bbd769ba3824927d56ee9a199f41

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ed87dbafef4c45abc761048fac2ad23b956e43859fb959107bb10969114b37d1
MD5 63f8056d4918340b03c9e18a1d44e757
BLAKE2b-256 ffedd7acf969c832d6b4632abd7d32090bf17e650efb7e8c5510f077756ab268

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 51efd17b0919263d22b99e8fa37d747bc1ffa8c3f73fdb81768e792da77a4019
MD5 9cedb274f55d21b47c57ab85e7c8a0a9
BLAKE2b-256 c8fc8a8f536b2055255b4c5601ee94a8ff501d65cb7f63ad376525908e0c6ae0

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp312-cp312-win32.whl.

File metadata

  • Download URL: coniferest-0.0.15-cp312-cp312-win32.whl
  • Upload date:
  • Size: 323.5 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for coniferest-0.0.15-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 04de71a8437b2733aa7493802d4216e1ca575730c49c4570382dcfd161b2a0c3
MD5 115b7198e39bfbbb20e7af91d6f872b0
BLAKE2b-256 3acd2dc8c7dc26ccf3282cb1ab98984e67753e4c0134ffce3c1cb4fd59a44830

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c04a8e8408d2c972570a1614c630c8c69f442c6fa6774327fb93612215a830d7
MD5 b0370b90fc986bf056b7a18bb285b42d
BLAKE2b-256 ddbaaf49b5d4d437f2bf226c894acbad1f9f407bd2645ef4adba293bb5070bc9

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f9d94638dbe7e0724ee663b4e3771b8d1c1b224f997ef4e596c0605e13ffd0f2
MD5 95867b99ad0ec1e54b3b5e30eaf82483
BLAKE2b-256 85ca60a40e9c97a44088ade650833cdae7c59256880c6cefcf713c5c0ea5e748

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 764e0b7ad7bf20026847dbab508baf29f2dc3d539114beef4de7ff22b1c00565
MD5 80f9d02698b2b763402efeba52701e5c
BLAKE2b-256 b7f4d89749106315e7a1144a1ce766b982755bf0309e5ce514ce6ebcf7074149

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 66cfe8806f0940fcbbec597ffb8bfc9fe251bb47f1c3bd98c8882e1385a6acdc
MD5 31c5205170d3784d01ffe9bddad8d529
BLAKE2b-256 dc0aba1e7896a08f01ac767137f1a8bd44c343147526578724ba3c0f7512689d

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 49f592ebd4a12ec36e1c72175971963cc4eeddb5599aa15cdb97da67ddb5dc0a
MD5 47a248b27fc553f33e384f782ef504e4
BLAKE2b-256 c4c58dcf9ab2298f42ff0704930b9e4fb240fbfccdb8f04c719db2ea7106d113

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp311-cp311-win32.whl.

File metadata

  • Download URL: coniferest-0.0.15-cp311-cp311-win32.whl
  • Upload date:
  • Size: 323.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for coniferest-0.0.15-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 f47a1e7686ffcaac9313694ab1028675a60751820cb5c200e5e4e56e179d5176
MD5 19dd6e28a31483ea30e39e49bc0ff51f
BLAKE2b-256 888518dca6a4fca7c2eb3539556f53bd8518e7154ee89e857d9000eeb5788671

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b4564ad4b6bc8032917d120134c29469e15a8aae1a5db91f6da909aa39a853d
MD5 f096390e5e948e609748f19b45929254
BLAKE2b-256 c478dadcf964a1244b8e0e1250117675159e7abc4c7be654eca6cd0e51ad7612

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8e44b9966d060c552084015c80aa25e9adcb35343b3e651b7b28b61b716e99cd
MD5 d339a2c8b86f782dca7f484ac21b089a
BLAKE2b-256 b13e09bac2d5de0ab1f7fb6df6fa5defbaaaa2386909556172848eef3c59348a

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 137cffefad25ea50c2c5158c8f0af0b71e696da312b35d2b4a129260e6b13392
MD5 d334fdaf11efa778b84a5e4699c974ab
BLAKE2b-256 1acfe9fdc7c905cd25cb96d02e21d0cda200ffea666a2deb4658679a4639ad84

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce7e56662b7a4c90614ea637627f075fd59cd7bd14ab06258453d1b08bf972ef
MD5 1989be564ebf48f8aaafac6e7b7615a5
BLAKE2b-256 c6fce030740098cd94211128f0ccdea7f3bdd0e2829cc42ff94bbefcbb24dcfe

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a61d3a5a42c20af975c12226034fff4006538af7d4c0d19733a9057743a3a1d7
MD5 8450d545326e3a145b4a8d34b4746b68
BLAKE2b-256 16a55aba3b3402b1e38689fc913c685298e1380cb384f559a06367c5dabe1a74

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp310-cp310-win32.whl.

File metadata

  • Download URL: coniferest-0.0.15-cp310-cp310-win32.whl
  • Upload date:
  • Size: 324.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for coniferest-0.0.15-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 9411977c5c3227ea77c338f27ba0d698381d9a3bce1c485d3144c5baa1fbf01f
MD5 050a67499b425843940b6f8561c60d12
BLAKE2b-256 93461c197a93997f80de0a7a43832f56061d8f1d6455228cf9e3734d769bab3e

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1da219e4f2522f4ed0d08419eb0e1b0c9457766d736c161f93b9fde56a578f1e
MD5 1de05b151f2b0841562bef3fe7f87d58
BLAKE2b-256 0170cd560e227f42ca7844aa7de229f41bec51351fa8c34d69c1e1ce846a2ecd

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c657c371a7bb47966e5d8b722230361b6a6c2fee866a6fc4bc2521cd7cc986c4
MD5 78dc735eb3c28262c7c8db1aae16d17d
BLAKE2b-256 758e94b4e32aabcfcabd44a666ebbe054a1bc1fbe23e929edbb0c255ad7050bb

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 01f2d8e061e4973cb991867ca68d656cd21bdb8093612f792b93471b2774d831
MD5 c32be8f28c0874912aab674fed75a6cc
BLAKE2b-256 b116ae83970b2152ec1c685f286a46a96149d42528638d97f5759228c1f6b7ad

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 68a419c497411ad2f407c322b2ddce750c4cccedcfbe4b2ef50f04d863314583
MD5 19f4fcf40c80d681734b4426ad34793d
BLAKE2b-256 bf08a7f979cf46bb6584fe46199fbf12053ec79105479ff22e1de2f957ed52d3

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6488a823ca4eae39517b3a64fa4f878dd1e8535ad7e3c331b8e4002e6ee04493
MD5 885364ab4e6bfddd1c2d6883dfd8e057
BLAKE2b-256 f4f88797ec51210e8464392813a376ac6775caa3f8b98bb43c6f0a6908adef8e

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp39-cp39-win32.whl.

File metadata

  • Download URL: coniferest-0.0.15-cp39-cp39-win32.whl
  • Upload date:
  • Size: 324.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for coniferest-0.0.15-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 94c00bd42875401100fcb35673071dd5831369399afe77aedc81b41dbb4d2841
MD5 cd71689453bf5bad5442cb7dcff799da
BLAKE2b-256 a355f5b97ae4528bea434e0163f8cd7cf09e0944d701660f8b591b057a850a71

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d78109358328b1399fd8b4e19e2993eb72f0b1477adc6c587975b8b5c12ae6d
MD5 1261917c72be26b3f36c40c39667fffb
BLAKE2b-256 27dd455f8bf786d0971686d7a48bb7bfbf6ee044be690af07ca604d9ce304103

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2b1d451f1f00e1345533438ae50c9d55575282879879805c5ce5d6e2f4c42a4e
MD5 a3f8d961b863277aab2c8b0c038a10b5
BLAKE2b-256 df9b2315c8cbf8f6520f909c10e8c2b547e09e31e26b3880f7e2bd820dd7e134

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d4120d3711e2e655092152589304157174ef215f63bf39bf51a90d11ae6ca0e0
MD5 765e460e7a86e2973ff7b3470214d997
BLAKE2b-256 be6e308f709911ebdca50348d9b40ce3357861830b8c170027c91e87f70a130d

See more details on using hashes here.

File details

Details for the file coniferest-0.0.15-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.15-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5afb3b2eddfa868b72ff7c4861e4e7c62c51d690066fde4fe52131a357bbc345
MD5 b9e09fb0bba5065a74e02dcc5c29792c
BLAKE2b-256 fd696e624643a5cc88ed85da48e42f5f6622e747eceb2d7caec9255a225e520a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page