Skip to main content

conversion between units used in magnetism

Project description

convmag

Conversion between various units used in magnetism

The conversions between base units available are:

         T  <->  G         :    1e4
         T  <->  Oe        :    1e4
       A/m  <->  T         :    MU_0
       A/m  <->  G         :    1e4 * MU_0
         G  <->  Oe        :    1
       A/m  <->  Oe        :    1e3 * MU_0
  emu/cm^3  <->  T         :    1e3 * MU_0
erg/Oecm^3  <->  A/m       :    1e3
     emu/g  <->  Am^2/kg   :    1
     J/m^3  <->  GOe       :    1e8 * MU_0
     J/m^3  <->  erg/cm^3  :    1e1
       GOe  <->  erg/cm^3  :    1e3 * MU_0
      Am^2  <->  emu       :    1e3
      Am^2  <->  erg/G     :    1e3
      Am^2  <->  erg/Oe    :    1e3
       emu  <->  erg/G     :    1
       muB  <->  Am^2      :    MU_B
       muB  <->  emu       :    1e3 * MU_B
    muB/fu  <->  T         :    requires user input of lattice parameters

(the factors given above are for the forward conversion)

  • permeability of free space, MU_0 = 4 * 3.14159 * 1e-7 Vs/Am

  • Bohr magneton, MU_B = 9.274015e-24 Am^2 (muB is the unit string for conversions with Bohr magnetons)

The prefactors available for any base unit are: M (1e6), k (1e3), m (1e-3), µ (1e-6)

You can combine prefactors and base units to give e.g. MA/m or kJ/m^3


Installation:

Pip

You can install the current release (0.0.1) with pip:

    pip install convmag

Usage:

  1. a console script is provided and should be located in the Scripts directory of your Python distribution after installation. If you have this directory in your Path (environment variable on Windows) you can start the program by typing "convmag" in the console. In this case only single values can be converted (at one time).

  2. the package can be imported into python and then you can pass numpy arrays into the function convert_unit(), making sure to keep the default verbose=False. That way many values can be converted at once. The converted values are returned as a numpy array for further processing.

    >>> import numpy as np
    >>> import convmag as cm
    
    >>> vals_in_T = np.arange(0,130,20)
    
    >>> vals_in_T
    array([  0,  20,  40,  60,  80, 100, 120])
   
    >>> vals_in_Oe = cm.convert_unit(vals_in_T, "T", "Oe", verbose=False)
    
    >>> vals_in_Oe
    array([      0.,  200000.,  400000.,  600000.,  800000., 1000000., 1200000.])

Pure python, no other dependencies.

Requires Python >= 3.6 because f-strings are used

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

convmag-0.0.1.tar.gz (6.2 kB view hashes)

Uploaded Source

Built Distribution

convmag-0.0.1-py3-none-any.whl (7.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page