Library to check equality between two complex/nested objects
Project description
coola
Overview
coola
is a Python library that provides simple functions to check in a single line if two
complex/nested objects are equal or not.
coola
was initially designed to work
with PyTorch Tensor
s
and NumPy ndarray
, but it
is possible to extend it
to support other data structures.
Motivation
Let's imagine you have the following dictionaries that contain both a PyTorch Tensor
and a
NumPy ndarray
.
You want to check if the two dictionaries are equal or not.
By default, Python does not provide an easy way to check if the two dictionaries are equal or not.
It is not possible to use the default equality operator ==
because it will raise an error.
The coola
library was developed to fill this gap. coola
provides a function objects_are_equal
that can indicate if two complex/nested objects are equal or not.
>>> import numpy
>>> import torch
>>> from coola import objects_are_equal
>>> data1 = {"torch": torch.ones(2, 3), "numpy": numpy.zeros((2, 3))}
>>> data2 = {"torch": torch.zeros(2, 3), "numpy": numpy.ones((2, 3))}
>>> objects_are_equal(data1, data2)
False
coola
also provides a function objects_are_allclose
that can indicate if two complex/nested
objects are equal within a tolerance or not.
>>> import numpy
>>> import torch
>>> from coola import objects_are_allclose
>>> data1 = {"torch": torch.ones(2, 3), "numpy": numpy.zeros((2, 3))}
>>> data2 = {"torch": torch.zeros(2, 3), "numpy": numpy.ones((2, 3))}
>>> objects_are_allclose(data1, data2, atol=1e-6)
False
coola
supports the following types:
jax.numpy.ndarray
numpy.ndarray
numpy.ma.MaskedArray
pandas.DataFrame
pandas.Series
polars.DataFrame
polars.Series
torch.Tensor
torch.nn.utils.rnn.PackedSequence
xarray.DataArray
xarray.Dataset
xarray.Variable
Please check the quickstart page to learn more on
how to use coola
.
Documentation
- latest (stable): documentation from the latest stable release.
- main (unstable): documentation associated to the main branch of the repo. This documentation may contain a lot of work-in-progress/outdated/missing parts.
Installation
We highly recommend installing
a virtual environment.
coola
can be installed from pip using the following command:
pip install coola
To make the package as slim as possible, only the minimal packages required to use coola
are
installed.
To include all the dependencies, you can use the following command:
pip install coola[all]
Please check the get started page to see how to
install only some specific dependencies or other alternatives to install the library.
The following is the corresponding coola
versions and tested dependencies.
coola |
jax * |
numpy * |
pandas * |
polars * |
pyarrow * |
torch * |
xarray * |
python |
---|---|---|---|---|---|---|---|---|
main |
>=0.4.1,<1.0 |
>=1.21,<3.0 |
>=1.3,<3.0 |
>=0.18.3,<2.0 |
>=10.0,<18.0 |
>=1.11,<3.0 |
>=2023.1 |
>=3.9,<3.14 |
0.8.5 |
>=0.4.1,<1.0 |
>=1.21,<3.0 |
>=1.3,<3.0 |
>=0.18.3,<2.0 |
>=10.0,<18.0 |
>=1.11,<3.0 |
>=2023.1 |
>=3.9,<3.14 |
0.8.4 |
>=0.4.1,<1.0 |
>=1.21,<3.0 |
>=1.3,<3.0 |
>=0.18.3,<2.0 |
>=10.0,<18.0 |
>=1.11,<3.0 |
>=2023.1 |
>=3.9,<3.14 |
0.8.3 |
>=0.4.1,<1.0 |
>=1.21,<3.0 |
>=1.3,<3.0 |
>=0.18.3,<2.0 |
>=10.0,<18.0 |
>=1.11,<3.0 |
>=2023.1 |
>=3.9,<3.13 |
0.8.2 |
>=0.4.1,<1.0 |
>=1.21,<3.0 |
>=1.3,<3.0 |
>=0.18.3,<2.0 |
>=10.0,<18.0 |
>=1.11,<3.0 |
>=2023.1 |
>=3.9,<3.13 |
0.8.1 |
>=0.4.1,<1.0 |
>=1.21,<3.0 |
>=1.3,<3.0 |
>=0.18.3,<2.0 |
>=10.0,<18.0 |
>=1.11,<3.0 |
>=2023.1 |
>=3.9,<3.13 |
0.8.0 |
>=0.4.1,<1.0 |
>=1.21,<3.0 |
>=1.3,<3.0 |
>=0.18.3,<2.0 |
>=10.0,<18.0 |
>=1.11,<3.0 |
>=2023.1 |
>=3.9,<3.13 |
0.7.4 |
>=0.4.1,<1.0 |
>=1.21,<3.0 |
>=1.3,<3.0 |
>=0.18.3,<2.0 |
>=10.0,<18.0 |
>=1.11,<3.0 |
>=2023.1 |
>=3.9,<3.13 |
0.7.3 |
>=0.4.1,<1.0 |
>=1.21,<3.0 |
>=1.3,<3.0 |
>=0.18.3,<2.0 |
>=1.11,<3.0 |
>=2023.1 |
>=3.9,<3.13 |
|
0.7.2 |
>=0.4.1,<1.0 |
>=1.21,<3.0 |
>=1.3,<3.0 |
>=0.18.3,<2.0 |
>=1.11,<3.0 |
>=2023.1 |
>=3.9,<3.13 |
|
0.7.1 |
>=0.4.1,<1.0 |
>=1.21,<3.0 |
>=1.3,<3.0 |
>=0.18.3,<1.0 |
>=1.10,<3.0 |
>=2023.1 |
>=3.9,<3.13 |
|
0.7.0 |
>=0.4.1,<1.0 |
>=1.21,<2.0 |
>=1.3,<3.0 |
>=0.18.3,<1.0 |
>=1.10,<3.0 |
>=2023.1 |
>=3.9,<3.13 |
* indicates an optional dependency
older versions
coola |
jax * |
numpy * |
pandas * |
polars * |
torch * |
xarray * |
python |
---|---|---|---|---|---|---|---|
0.6.2 |
>=0.4.1,<1.0 |
>=1.21,<2.0 |
>=1.3,<3.0 |
>=0.18.3,<1.0 |
>=1.10,<3.0 |
>=2023.1 |
>=3.9,<3.13 |
0.6.1 |
>=0.4.1,<1.0 |
>=1.21,<2.0 |
>=1.3,<3.0 |
>=0.18.3,<1.0 |
>=1.10,<3.0 |
>=2023.1 |
>=3.9,<3.13 |
0.6.0 |
>=0.4.1,<1.0 |
>=1.21,<2.0 |
>=1.3,<3.0 |
>=0.18.3,<1.0 |
>=1.10,<3.0 |
>=2023.1 |
>=3.9,<3.13 |
0.5.0 |
>=0.4.1,<0.5 |
>=1.21,<1.27 |
>=1.3,<2.2 |
>=0.18.3,<1.0 |
>=1.10,<2.2 |
>=2023.1,<2023.13 |
>=3.9,<3.13 |
0.4.0 |
>=0.4.1,<0.5 |
>=1.21,<1.27 |
>=1.3,<2.2 |
>=0.18.3,<1.0 |
>=1.10,<2.2 |
>=2023.1,<2023.13 |
>=3.9,<3.13 |
0.3.1 |
>=0.4.1,<0.5 |
>=1.21,<1.27 |
>=1.3,<2.2 |
>=0.18.3,<1.0 |
>=1.10,<2.2 |
>=2023.1,<2023.13 |
>=3.9,<3.13 |
0.3.0 |
>=0.4.1,<0.5 |
>=1.21,<1.27 |
>=1.3,<2.2 |
>=0.18.3,<1.0 |
>=1.10,<2.2 |
>=2023.1,<2023.13 |
>=3.9,<3.13 |
0.2.2 |
>=0.4.1,<0.5 |
>=1.21,<1.27 |
>=1.3,<2.2 |
>=0.18.3,<1.0 |
>=1.10,<2.2 |
>=2023.1,<2023.13 |
>=3.9,<3.13 |
0.2.1 |
>=0.4.1,<0.5 |
>=1.21,<1.27 |
>=1.3,<2.2 |
>=0.18.3,<1.0 |
>=1.10,<2.2 |
>=2023.1,<2023.13 |
>=3.9,<3.13 |
0.2.0 |
>=0.4.1,<0.5 |
>=1.21,<1.27 |
>=1.3,<2.2 |
>=0.18.3,<1.0 |
>=1.10,<2.2 |
>=2023.1,<2023.13 |
>=3.9,<3.13 |
0.1.2 |
>=0.4.1,<0.5 |
>=1.21,<1.27 |
>=1.3,<2.2 |
>=0.18.3,<0.21 |
>=1.10,<2.2 |
>=2023.1,<2023.13 |
>=3.9,<3.13 |
0.1.1 |
>=0.4.1,<0.5 |
>=1.21,<1.27 |
>=1.3,<2.2 |
>=0.18.3,<0.20 |
>=1.10,<2.2 |
>=2023.1,<2023.13 |
>=3.9,<3.13 |
0.1.0 |
>=0.4.1,<0.5 |
>=1.21,<1.27 |
>=1.3,<2.2 |
>=0.18.3,<0.20 |
>=1.10,<2.2 |
>=2023.1,<2023.13 |
>=3.9,<3.12 |
0.0.26 |
>=0.4.1,<0.5 |
>=1.21,<1.27 |
>=1.3,<2.2 |
>=0.18.3,<0.20 |
>=1.10,<2.2 |
>=2023.1,<2023.13 |
>=3.9,<3.12 |
0.0.25 |
>=0.4.1,<0.5 |
>=1.21,<1.27 |
>=1.3,<2.2 |
>=0.18.3,<0.20 |
>=1.10,<2.2 |
>=2023.4,<2023.11 |
>=3.9,<3.12 |
0.0.24 |
>=0.3,<0.5 |
>=1.21,<1.27 |
>=1.3,<2.2 |
>=0.18.3,<0.20 |
>=1.10,<2.2 |
>=2023.3,<2023.9 |
>=3.9,<3.12 |
0.0.23 |
>=0.3,<0.5 |
>=1.21,<1.27 |
>=1.3,<2.2 |
>=0.18.3,<0.20 |
>=1.10,<2.1 |
>=2023.3,<2023.9 |
>=3.9,<3.12 |
0.0.22 |
>=0.3,<0.5 |
>=1.20,<1.26 |
>=1.3,<2.1 |
>=0.18.3,<0.19 |
>=1.10,<2.1 |
>=2023.3,<2023.9 |
>=3.9,<3.12 |
0.0.21 |
>=0.3,<0.5 |
>=1.20,<1.26 |
>=1.3,<2.1 |
>=0.18.3,<0.19 |
>=1.10,<2.1 |
>=2023.3,<2023.8 |
>=3.9,<3.12 |
0.0.20 |
>=0.3,<0.5 |
>=1.20,<1.26 |
>=1.3,<2.1 |
>=0.18.3,<0.19 |
>=1.10,<2.1 |
>=2023.3,<2023.8 |
>=3.9 |
Contributing
Please check the instructions in CONTRIBUTING.md.
Suggestions and Communication
Everyone is welcome to contribute to the community. If you have any questions or suggestions, you can submit Github Issues. We will reply to you as soon as possible. Thank you very much.
API stability
:warning: While coola
is in development stage, no API is guaranteed to be stable from one
release to the next.
In fact, it is very likely that the API will change multiple times before a stable 1.0.0 release.
In practice, this means that upgrading coola
to a new version will possibly break any code that
was using the old version of coola
.
License
coola
is licensed under BSD 3-Clause "New" or "Revised" license available in LICENSE
file.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file coola-0.8.5.tar.gz
.
File metadata
- Download URL: coola-0.8.5.tar.gz
- Upload date:
- Size: 46.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.4 CPython/3.12.7 Linux/6.5.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 63dfb9fa1f8fc2c6ed7de817d660352c16db7bd84dda1d4f9e98aa535c3199d6 |
|
MD5 | c08b84290b8bb472795d95f36f348535 |
|
BLAKE2b-256 | fea276a247862fdbe0bcafc50119a15eac3dd04862c655a05128634c32ba400f |
File details
Details for the file coola-0.8.5-py3-none-any.whl
.
File metadata
- Download URL: coola-0.8.5-py3-none-any.whl
- Upload date:
- Size: 83.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.4 CPython/3.12.7 Linux/6.5.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d4f218fbb052f5352977e7a6d7ba805de1d41e388ad5236c617dfa0d4144ca99 |
|
MD5 | 539a43636a265d5a072ebb58d10b34bc |
|
BLAKE2b-256 | 4961603cc874391c7f6c7f60dc5c6f1d4f1daee1c9d65673c87473cdf48b172f |