Skip to main content

Compact Prediction Tree: A Lossless Model for Accurate Sequence Prediction

Project description

CPT

This project is a cython open-source implementation of the Compact Prediction Tree algorithm using multithreading.

CPT is a sequence prediction algorithm. It is a highly explainable model and good at predicting, in a finite alphabet, next value of a sequence. However, given a sequence, CPT cannot predict an element already present in this sequence. CPT needs a tuning.

This implementation is based on the following research papers

http://www.philippe-fournier-viger.com/ADMA2013_Compact_Prediction_trees.pdf

http://www.philippe-fournier-viger.com/spmf/PAKDD2015_Compact_Prediction_tree+.pdf

Installation

You can simply use pip install cpt.

For unix users, no wheels are published (problem with auditwheel which cannot repair wheels to "manylinux"), you should install cython then cpt: pip install cython cpt.

However unix users can simply install from sources: pip install cython && python setup.py install.

For osx users, do not forget to install brew's llvm and libomp. You can follow the directives of this issue: https://github.com/bluesheeptoken/CPT/issues/68

Simple example

You can test the model with the following code

from cpt import Cpt
model = Cpt()

model.fit([['hello', 'world'],
           ['hello', 'this', 'is', 'me'],
           ['hello', 'me']
          ])

model.predict([['hello'], ['hello', 'this']])
# Output: ['me', 'is']

For an example with the compatibility with sklearn, you should check the documentation.

Features

Train

The model can be trained with the fit method.

If needed the model can be retrained with the same method. It adds new sequences to the model and do not remove the old ones.

Multithreading

The predictions are launched by default with multithreading with OpenMP.

The predictions can also be launched in a single thread with the option multithread=False in the predict method.

You can control the number of threads by setting the following environment variable OMP_NUM_THREADS.

Pickling

You can pickle the model to save it, and load it later via pickle library.

from cpt import Cpt
import pickle


model = Cpt()
model.fit([['hello', 'world']])

dumped = pickle.dumps(model)

unpickled_model = pickle.loads(dumped)

print(model == unpickled_model)

Explainability

The CPT class has several methods to explain the predictions.

You can see which elements are considered as noise (with a low presence in sequences) with model.compute_noisy_items(noise_ratio).

You can retrieve trained sequences with model.retrieve_sequence(id).

You can find similar sequences with find_similar_sequences(sequence).

You can not yet retrieve automatically all similar sequences with the noise reduction technique.

Tuning

CPT has 3 meta parameters that need to be tuned. You can check how to tune them in the documentation. To tune you can use the model_selection module from sklearn, you can find an example here on how to.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cpt-1.2.1.tar.gz (105.3 kB view details)

Uploaded Source

Built Distributions

cpt-1.2.1-cp38-cp38m-win_amd64.whl (85.9 kB view details)

Uploaded CPython 3.8m Windows x86-64

cpt-1.2.1-cp38-cp38m-win32.whl (70.3 kB view details)

Uploaded CPython 3.8m Windows x86

cpt-1.2.1-cp38-cp38-manylinux2010_x86_64.whl (757.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

cpt-1.2.1-cp38-cp38-manylinux2010_i686.whl (737.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

cpt-1.2.1-cp38-cp38-macosx_10_13_x86_64.whl (89.0 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

cpt-1.2.1-cp37-cp37m-win_amd64.whl (83.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

cpt-1.2.1-cp37-cp37m-win32.whl (68.4 kB view details)

Uploaded CPython 3.7m Windows x86

cpt-1.2.1-cp37-cp37m-manylinux2010_x86_64.whl (718.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

cpt-1.2.1-cp37-cp37m-manylinux2010_i686.whl (698.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

cpt-1.2.1-cp37-cp37m-macosx_10_13_x86_64.whl (89.4 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

cpt-1.2.1-cp36-cp36m-win_amd64.whl (83.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

cpt-1.2.1-cp36-cp36m-win32.whl (68.4 kB view details)

Uploaded CPython 3.6m Windows x86

cpt-1.2.1-cp36-cp36m-manylinux2010_x86_64.whl (718.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

cpt-1.2.1-cp36-cp36m-manylinux2010_i686.whl (699.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

cpt-1.2.1-cp36-cp36m-macosx_10_13_x86_64.whl (91.8 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

cpt-1.2.1-cp35-cp35m-manylinux2010_x86_64.whl (708.1 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

cpt-1.2.1-cp35-cp35m-manylinux2010_i686.whl (688.7 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

cpt-1.2.1-cp35-cp35m-macosx_10_13_x86_64.whl (90.0 kB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file cpt-1.2.1.tar.gz.

File metadata

  • Download URL: cpt-1.2.1.tar.gz
  • Upload date:
  • Size: 105.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.5.9

File hashes

Hashes for cpt-1.2.1.tar.gz
Algorithm Hash digest
SHA256 f331b3e06deb34368cf5282fd9716cddf72e1f88433735be4b3e496bc8ab8258
MD5 1b8ce6ac3c7b5350e06c3853cc375001
BLAKE2b-256 1d81244d68c41007883a343021eb77db6fd7ba97874b3c26227b7047ca0fc791

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp38-cp38m-win_amd64.whl.

File metadata

  • Download URL: cpt-1.2.1-cp38-cp38m-win_amd64.whl
  • Upload date:
  • Size: 85.9 kB
  • Tags: CPython 3.8m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.0

File hashes

Hashes for cpt-1.2.1-cp38-cp38m-win_amd64.whl
Algorithm Hash digest
SHA256 65e07b916ec162a2ef53673da6307bdce00036bd3b61e7e36714b978eecd34e4
MD5 8fe61f3f19b22dc4eba360e4b0306687
BLAKE2b-256 ace00f1d14d78c5fef70a25e9fbe59dee0db7d8cad623ba7b7786a70dfc85cfc

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp38-cp38m-win32.whl.

File metadata

  • Download URL: cpt-1.2.1-cp38-cp38m-win32.whl
  • Upload date:
  • Size: 70.3 kB
  • Tags: CPython 3.8m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.0

File hashes

Hashes for cpt-1.2.1-cp38-cp38m-win32.whl
Algorithm Hash digest
SHA256 60db7e120fad1953d20fc96127db45c11e0ffb442f1cad2874d4bab69e5abb19
MD5 c0c1eefd7a388a8f6f94c7305802c5e7
BLAKE2b-256 37c05a19d1e820b632c858f59505eaeb396004017e77fab958c5d6a8316f01e2

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cpt-1.2.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 757.2 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.7

File hashes

Hashes for cpt-1.2.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dd6db78501c6e4606ceae684f0fc8ab8efe2c058ad4feefa855026d394677029
MD5 0d902612a450374373efd1b31aabac8b
BLAKE2b-256 4bea9396a1e74456568c3fc76790f61358f6362b77a2132fa84d879dc6adc351

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: cpt-1.2.1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 737.2 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.7

File hashes

Hashes for cpt-1.2.1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 13ae36f5279d69d34506e8e701f9435515284726d9a65ecfe505c0d9d15e951d
MD5 583a14571f37a591a945e3fb2c342125
BLAKE2b-256 cab20a41b8a20f2ae18aa9f9c71ebc2520cf260aa5dc2c2a0cf813ded76edc05

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: cpt-1.2.1-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 89.0 kB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for cpt-1.2.1-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4c2f7eee81b2a2ef3f5a8e62c09004705cfe55d01fee3a8bbf049a7c0237f35a
MD5 6a4d2a4e8e792c8cec594af661ccc516
BLAKE2b-256 0fef4f6899b2e05bc92a8fbed744c5f4984d75b378aed8a95e81b717b27b39ae

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: cpt-1.2.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 83.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.5

File hashes

Hashes for cpt-1.2.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a1177b40a907366aa9358acd34b3d754b39c3d292d7909dced2674ea21f3ddb8
MD5 d20a857bae4e7097ab3df53aa4656c31
BLAKE2b-256 38973e3d621b55a5e3d7872acbc58a748dce335130d2af62a13eb94d6d539ce1

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: cpt-1.2.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 68.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.5

File hashes

Hashes for cpt-1.2.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2f2474896c66c25e754e2e9eabe92f0e09704405e659e4a6708b9b959987e3dd
MD5 826198745366d4817e59805c731d3fcb
BLAKE2b-256 d40ba2de05ca537713827752ca4c023032a6fa330dd98fd1257e2e2e43909211

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cpt-1.2.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 718.2 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.7

File hashes

Hashes for cpt-1.2.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 feb0f0b93d97c7e98e1285a70484ea5051ef32b98670a1a6fa6f0c9c2f807e24
MD5 0d89e81d2cb8c49415ff6728647cd50e
BLAKE2b-256 7389b7110d6f8c93146cb12044337822fffa8b5d3c4ff334c582dd6617884cfc

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: cpt-1.2.1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 698.5 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.7

File hashes

Hashes for cpt-1.2.1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 12447257b95417083108f883836767b5a67e377931bb6fdd2701cefb227e47c6
MD5 d9dfa1cd2c2c003d2c56010bcc8cec60
BLAKE2b-256 17e71ba8a22cc52af24f7e06a0db7fcda3a050a4834770d6ba9e1fe66e2fbec6

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: cpt-1.2.1-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 89.4 kB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for cpt-1.2.1-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ad9efb6cfe1484be050a376ca22ddcc7ef83ce36f70af9bbcfb8658dc2f061aa
MD5 44d650a4786b3f0ab2a583929ac014e0
BLAKE2b-256 8e0978558f241d17cf9be28021a708bebe10bcf4529d9b81bb71fe9c9a43d65a

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: cpt-1.2.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 83.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.8

File hashes

Hashes for cpt-1.2.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d8714c0242247d1216a251ce484b28662dfb9ab44f044b234fd8d67872685e11
MD5 eba1e86765e0e9d90e4f5d88bc6a6072
BLAKE2b-256 1f1f1bc14257db5dd1021313e1fbf57f9b832574ee82e82c646ec6f45f87f5fb

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: cpt-1.2.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 68.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.8

File hashes

Hashes for cpt-1.2.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 8900caf0e2542580294d32a601e5dcd5254e21ae97265d5e2ae46e71934577de
MD5 22480230792c4868b0e0dc0bb6e1ad79
BLAKE2b-256 a5ae12bd4fb9cd245cda3a5576565f5f669d526eda67128a09281b3c3ae73bca

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cpt-1.2.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 718.2 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.7

File hashes

Hashes for cpt-1.2.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c4fae8afb2b0e8d27825044725af9c76eded0b513c1bf13d24a869b96503ba7b
MD5 6d0aeb1e3b3d249ba1aa72b0b90b5c20
BLAKE2b-256 ddb92a406f183fafb580f72db8fa5da8547e2d4f044f6e3a1d11adc75d4409c0

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: cpt-1.2.1-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 699.0 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.7

File hashes

Hashes for cpt-1.2.1-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 13eeeb63215ee0c4434d0c4fe2940f0677c587a850f7b1a7b2f6be7f6df4cb37
MD5 055c4269553697c87590b3615218a6e9
BLAKE2b-256 6878b5ffa98f02f93479f2a009374dbc77b64f208d83881553ede2d87ca39c04

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: cpt-1.2.1-cp36-cp36m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 91.8 kB
  • Tags: CPython 3.6m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.10

File hashes

Hashes for cpt-1.2.1-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e344a9a8b228da80f630f2ec071eafcf7663834e3679994efe66ba1e810ec947
MD5 02de32219b5b75323f6bab304420ce95
BLAKE2b-256 a80df23a442836f8e93f8d9f6fd09b7e8da2d308a672543954c43455f8bb59ff

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cpt-1.2.1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 708.1 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.7

File hashes

Hashes for cpt-1.2.1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 95b35053801967dcd84de31be98242732f0b5cbfdf3baec152bfa1d7dbae94cb
MD5 9a0b8ac58fa17bfc1f7d6e8acc7504c1
BLAKE2b-256 9209c23a81dd71efc4c21c788f8a75359e7e820b328cac03461a1b406c2ac8d1

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: cpt-1.2.1-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 688.7 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.7

File hashes

Hashes for cpt-1.2.1-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 09b54144bca0d297367fac32e7488e75160d0d299ea9bfc683e67b452e9b6e82
MD5 a469decc3f6be685d516e40ba0cf1159
BLAKE2b-256 a98e79841adb19be9427d1609d0b26131d44cc251e8e09b7710b47a4e2f9784e

See more details on using hashes here.

File details

Details for the file cpt-1.2.1-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: cpt-1.2.1-cp35-cp35m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 90.0 kB
  • Tags: CPython 3.5m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.5.9

File hashes

Hashes for cpt-1.2.1-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 dd6ec72741c3d71326bedd9b48e5e550e0ecbe09b9723e600fef69bc0980239c
MD5 856b726b5089f0739f6e02fc6fd3dfa2
BLAKE2b-256 c953e5764780751bd053075e80b023d42d0f17c1d3572abfb483617585863394

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page