Skip to main content

Compact Prediction Tree: A Lossless Model for Accurate Sequence Prediction

Project description

CPT

Downloads License

What is it ?

This project is a cython open-source implementation of the Compact Prediction Tree algorithm using multithreading.

CPT is a sequence prediction model. It is a highly explainable model specialized in predicting the next element of a sequence over a finite alphabet.

This implementation is based on the following research papers:

Installation

You can simply use pip install cpt.

Simple example

You can test the model with the following code:

from cpt.cpt import Cpt
model = Cpt()

model.fit([['hello', 'world'],
           ['hello', 'this', 'is', 'me'],
           ['hello', 'me']
          ])

model.predict([['hello'], ['hello', 'this']])
# Output: ['me', 'is']

For an example with the compatibility with sklearn, you should check the documentation.

Features

Train

The model can be trained with the fit method.

If needed the model can be retrained with the same method. It adds new sequences to the model and do not remove the old ones.

Multithreading

The predictions are launched by default with multithreading with OpenMP.

The predictions can also be launched in a single thread with the option multithread=False in the predict method.

You can control the number of threads by setting the following environment variable OMP_NUM_THREADS.

Pickling

You can pickle the model to save it, and load it later via pickle library.

from cpt.cpt import Cpt
import pickle


model = Cpt()
model.fit([['hello', 'world']])

dumped = pickle.dumps(model)

unpickled_model = pickle.loads(dumped)

print(model == unpickled_model)

Explainability

The CPT class has several methods to explain the predictions.

You can see which elements are considered as noise (with a low presence in sequences) with model.compute_noisy_items(noise_ratio).

You can retrieve trained sequences with model.retrieve_sequence(id).

You can find similar sequences with find_similar_sequences(sequence).

You can not yet retrieve automatically all similar sequences with the noise reduction technique.

Tuning

CPT has 3 meta parameters that need to be tuned. You can check how to tune them in the documentation. To tune you can use the model_selection module from sklearn, you can find an example here on how to.

Benchmark

The benchmark has been made on the FIFA dataset, the data can be found on the SPMF website.

Using multithreading, CPT was able to perform around 5000 predictions per second.

Without multithreading, CPT predicted around 1650 sequences per second.

Details on the benchmark can be found here.

Further reading

A study has been made on how to reduce dataset size, and so training / testing time using PageRank on the dataset.

The study has been published in IJIKM review here. An overall performance improvement of 10-40% has been observed with this technique on the prediction time without any accuracy loss.

One of the co-author of CPT has also published an algorithm subseq for sequence prediction. An implementation can be found here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cpt-1.3.0.tar.gz (113.3 kB view details)

Uploaded Source

Built Distributions

cpt-1.3.0-cp310-cp310m-win_amd64.whl (95.0 kB view details)

Uploaded CPython 3.10m Windows x86-64

cpt-1.3.0-cp310-cp310m-win32.whl (81.1 kB view details)

Uploaded CPython 3.10m Windows x86

cpt-1.3.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (856.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

cpt-1.3.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (827.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

cpt-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl (102.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

cpt-1.3.0-cp39-cp39m-win_amd64.whl (95.2 kB view details)

Uploaded CPython 3.9m Windows x86-64

cpt-1.3.0-cp39-cp39m-win32.whl (81.1 kB view details)

Uploaded CPython 3.9m Windows x86

cpt-1.3.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (858.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

cpt-1.3.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (827.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

cpt-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl (101.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

cpt-1.3.0-cp38-cp38m-win_amd64.whl (93.2 kB view details)

Uploaded CPython 3.8m Windows x86-64

cpt-1.3.0-cp38-cp38m-win32.whl (76.9 kB view details)

Uploaded CPython 3.8m Windows x86

cpt-1.3.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (873.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

cpt-1.3.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (844.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

cpt-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl (100.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

cpt-1.3.0-cp37-cp37m-win_amd64.whl (91.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

cpt-1.3.0-cp37-cp37m-win32.whl (74.9 kB view details)

Uploaded CPython 3.7m Windows x86

cpt-1.3.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (830.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

cpt-1.3.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (805.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

cpt-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (100.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

cpt-1.3.0-cp36-cp36m-win_amd64.whl (91.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

cpt-1.3.0-cp36-cp36m-win32.whl (74.9 kB view details)

Uploaded CPython 3.6m Windows x86

cpt-1.3.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (828.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

cpt-1.3.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (804.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

cpt-1.3.0-cp36-cp36m-macosx_10_9_x86_64.whl (103.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file cpt-1.3.0.tar.gz.

File metadata

  • Download URL: cpt-1.3.0.tar.gz
  • Upload date:
  • Size: 113.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for cpt-1.3.0.tar.gz
Algorithm Hash digest
SHA256 1f6c502b19ae18a9e721080252a55fa067cd5d6bc37c9af01f0b678fb5e07bc9
MD5 c3827c71334b63ca45c0f58ff96bee7b
BLAKE2b-256 18758c860d8e77d4aa5a1b0cae9964d5297512f019f306570afff9c4020075be

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp310-cp310m-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.0-cp310-cp310m-win_amd64.whl
  • Upload date:
  • Size: 95.0 kB
  • Tags: CPython 3.10m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for cpt-1.3.0-cp310-cp310m-win_amd64.whl
Algorithm Hash digest
SHA256 aa42eb2fdd6d3c9e9410e755c491cabf5672967d881559981b6999747758de65
MD5 54786cbc8da774d1faf5e6c13f9b88d5
BLAKE2b-256 7c2a30b18b60b394b6967b9f96c3a45eb26c0bb43e38dba1d304bc08cfd4b28e

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp310-cp310m-win32.whl.

File metadata

  • Download URL: cpt-1.3.0-cp310-cp310m-win32.whl
  • Upload date:
  • Size: 81.1 kB
  • Tags: CPython 3.10m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for cpt-1.3.0-cp310-cp310m-win32.whl
Algorithm Hash digest
SHA256 2332aef54fc4ad58b0172b0eed544b5dac4b4df9223818bc0dc5c4d6f1bea52a
MD5 023d652b47bffe459c701544bb178c88
BLAKE2b-256 37c9d9e2c8dc2ea1b8842128e9d4d892727ff052e40e5fcb6cd1a11b06a7ea72

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: cpt-1.3.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 856.9 kB
  • Tags: CPython 3.10, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.11

File hashes

Hashes for cpt-1.3.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dbb0397b6534c2afefaa5b1b282bfe0269123486da8808d4b605b9d5a181cf95
MD5 fb4816459d75fc81f09122018c9dc6ec
BLAKE2b-256 d489a080429de0325d4448c42aae581a46c57bb0e6d87ad0b98c16b6c8e433ea

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: cpt-1.3.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 827.9 kB
  • Tags: CPython 3.10, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.11

File hashes

Hashes for cpt-1.3.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d5e10b4b3ca6421bf3c8e17e71cb0baf9ab01663533fe3320678773d55508ac5
MD5 69eb2d293bffe2476d61b3cd05412794
BLAKE2b-256 9198572e23eb6606931ac28493bdd87f9c81631bff7c8bb4a1fbac49cabe690c

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: cpt-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 102.9 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.11

File hashes

Hashes for cpt-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 290b3af8044d214f4bd102b283c4dd7fb3801ed37192c3884f27b8f9ad6a2c67
MD5 8fea9bfcb47e6d2af1ee4b83c15fb8d5
BLAKE2b-256 29a04187db5924d769e7a9df918cc66a24c919a20205c80517146009d395a8fd

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp39-cp39m-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.0-cp39-cp39m-win_amd64.whl
  • Upload date:
  • Size: 95.2 kB
  • Tags: CPython 3.9m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.1

File hashes

Hashes for cpt-1.3.0-cp39-cp39m-win_amd64.whl
Algorithm Hash digest
SHA256 e0d3709c922f61b3c4f311fedc187b0b226eefd09206986ac6a239a1ba79819b
MD5 ebd101c39dfa7fd5cd34725ebfc2aba7
BLAKE2b-256 e4200b9ae3f266e9a235764ea276291bc419fd45a984e370688dcc5ee9f1a24b

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp39-cp39m-win32.whl.

File metadata

  • Download URL: cpt-1.3.0-cp39-cp39m-win32.whl
  • Upload date:
  • Size: 81.1 kB
  • Tags: CPython 3.9m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.1

File hashes

Hashes for cpt-1.3.0-cp39-cp39m-win32.whl
Algorithm Hash digest
SHA256 7c80bd0e6f061c20f81091b58999739eb7d54c565998942243fa4c4a1e685da7
MD5 700f2b54694cf472117fbe8e22ec7a90
BLAKE2b-256 f19afb9694eeaad2935df930074e879400ac2993a50bbf544e80243892dfc631

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: cpt-1.3.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 858.9 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for cpt-1.3.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 82811896d53448fd9104eaddf7cb5112eec410a942754106b2fb72378a4bedb7
MD5 de8dd0552a361cffc6bfc0ddb637a73c
BLAKE2b-256 b177b56bc9d403bb2143c60de1013b9b115e27888ca4292a87b6f6beb1f56215

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: cpt-1.3.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 827.7 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for cpt-1.3.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9b0f6c3b69e275a51b315189e216ead8be0ffd6d918273255c248ee80f9c16b5
MD5 9016e96c1d433464a919b6dc0e131fd0
BLAKE2b-256 8e53092109d309cb99102c95c2817c0476ad8925f49d18d73509529db46fb16c

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: cpt-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 101.0 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for cpt-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d78aa3879dd1fae83ee6a6dbd87b9874ef3e4dd8da6667fb2c0de9e832cb6b25
MD5 d95f50b20e0fb2c2d5437b8c7f86ce85
BLAKE2b-256 d594ae6e83dcaf07446315b64c50e726438d776336168b5480a845cd26df0dad

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp38-cp38m-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.0-cp38-cp38m-win_amd64.whl
  • Upload date:
  • Size: 93.2 kB
  • Tags: CPython 3.8m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.0

File hashes

Hashes for cpt-1.3.0-cp38-cp38m-win_amd64.whl
Algorithm Hash digest
SHA256 0ae1e87fa6afd11a6107ef1bd660aa287f443f5027cb1051a1e76f7a16e1f05a
MD5 5d076fa525f73cd337f068c931d8a438
BLAKE2b-256 4a81553d3bc74c1b4cdfd909b5a2f467bb8182c7f10a484ad4ded37a5660a8d6

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp38-cp38m-win32.whl.

File metadata

  • Download URL: cpt-1.3.0-cp38-cp38m-win32.whl
  • Upload date:
  • Size: 76.9 kB
  • Tags: CPython 3.8m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.0

File hashes

Hashes for cpt-1.3.0-cp38-cp38m-win32.whl
Algorithm Hash digest
SHA256 b47a08b77fca7259d4dc85462ae765b3e869bb43c006e1e953e043f44bb1cd27
MD5 eff348067f31087a410b7ff13412cc85
BLAKE2b-256 98e0ff5358a4ce3958c5897b0a0ac3d7de852d68ee6d8097ad37e11d023061f6

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: cpt-1.3.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 873.1 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for cpt-1.3.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f91b5a0ce3ca8e28505938a3ed2062212a9f18d6dcff38171091396704ad76b9
MD5 fe6d1439706156a0f754a6526f72c9e2
BLAKE2b-256 5df73c15c32e971b3bebe6fcc0c7a4ecf1a0af551467f6877446351fc807c55f

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: cpt-1.3.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 844.5 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for cpt-1.3.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 616ce77de76c16f8caab04f6ab583b6747b87478c4c391bb2819fd236e7d410d
MD5 42b35e7bdbbd229b36992a9f9c4404bd
BLAKE2b-256 a1ce1b0973befabc553ee8643ab6ca55a4493f82166e80aba063b4df8e49ea83

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: cpt-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 100.4 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for cpt-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f280ed1306beac1e2589f68974e14ca999a45a527cb154812f8b55eac22ebdcf
MD5 c9fdc8b22fccfe7cc6752c59a4e765f6
BLAKE2b-256 fd12d9d1e6a221710349a0c55dacd3995bb22ca16ccc4c83fbc712554fe2ed7d

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 91.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.7.5

File hashes

Hashes for cpt-1.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 900a6d7d2cb7b8fd9a822954a46e70882c7a67cc696c112c23f083a15d605e28
MD5 7cbb1b893a826be43436e10adf617ffc
BLAKE2b-256 ec1f24d0cbe16d43b70091248a1ed299f8a03e2c5e8638d5a5c6f5eed9d517a1

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: cpt-1.3.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 74.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.7.5

File hashes

Hashes for cpt-1.3.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 9580ab3bd1543bd330bd11404fccc54940faea9908d031017c0acfdddefdec63
MD5 5331556941b09941caf1b4adc6b30c89
BLAKE2b-256 dc1055fbf56142b850123ea9bc8e927d663a11195f42a5514f732457af762f96

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 adf2eb4e8b208811f8b4a7885066ebb3f56bf26e602faa5056238588f11f137a
MD5 9265a3aa5f0c539560474ba7e6a32317
BLAKE2b-256 55338d2d53ca6348627fd4eb16e53c69ea8aa8d4954d5aaaa77dc0bf5014258d

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: cpt-1.3.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 805.0 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for cpt-1.3.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3b2b4c2420347791d093911485857cf302a9035bc494c982240b46b6237e5b8f
MD5 20a3c704bcb61aa6afe060b5ec773aa2
BLAKE2b-256 6a3ca6ef0c1a44c8404521d00250c2941b1a48f9e5e92eca8d3bfbcfa54edd56

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: cpt-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 100.9 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for cpt-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7dde7161697d8cb30a6ae3354fe5a203e888e3d18be6544b1abf1ea6f46f56fe
MD5 45926d69b196e4074a53f7459d0b7a5e
BLAKE2b-256 54e56e604f7831d190195d9dee85b349e23ed82ae2be5784bc39560e1625a793

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 91.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.6.8

File hashes

Hashes for cpt-1.3.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d362f9923776d9c3b10189b6eafb18b834268b3bbfc0d28544617d934465120a
MD5 f11a2936d0c7189e78188c532900e611
BLAKE2b-256 662785f0fd933ae7eee043686ac6678a02984ccb0a4c8f19880c6d46c4dd712c

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: cpt-1.3.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 74.9 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.6.8

File hashes

Hashes for cpt-1.3.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 386445671214139786fa54e27935c5823b4b9fc9baf3bb471c2a536214139e65
MD5 4fa5fe3c0cc07af8ff1817df0a452b3a
BLAKE2b-256 22d2b96528bcf66f6234538aede19c3beaac0582b63f358a214ce6e184e8f7cb

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 873c8fd735453835960e6905905d59b40ec6c2d8c8842144736305bfa12c28d5
MD5 8a7fae25917c5a91b3d4835552ecbe12
BLAKE2b-256 b7c36d5499cc33557ab4ee08be238c7e3acc366af7046903e51c4402dbd519ce

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: cpt-1.3.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 804.8 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for cpt-1.3.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 471a64ed1dbeb70b7a00904a4ef9c0c8bf3d07acefc7ef1a17b1cfffc356ef76
MD5 6bb022173d4e356470eab1300063910a
BLAKE2b-256 261cae31b8b8082ec2426744c5581202feed3d80678f551d622249bb052f0ee0

See more details on using hashes here.

File details

Details for the file cpt-1.3.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: cpt-1.3.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 103.6 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for cpt-1.3.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 760092164c279c118e92e47f4dd018b548c5a093922111d3e8202ab20ab7c567
MD5 c398394440eb999c09fa4e9ab306de91
BLAKE2b-256 57b79b67647e3f396168b9a071dfd0925b46e9741815d0f18101c73f0a7d4511

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page