Skip to main content

AMOSSYS Cyber Range client API

Project description

AMOSSYS Cyber Range client API

Installation

Note: it is recommanded to install the package in a virtualenv in order to avoid conflicts with version dependencies of other packages.

python3 setup.py install

Configuration

Access to the Cyber Range is possible with either of the following configuration methods.

Configuration through configuration file (CLI only)

It is possible to configure access to the Cyber Range through a configuration file, specified with the --config command line parameter:

$ cyber_range --help
(...)
--config CONFIG       Configuration file
(...)

Configuration file content should be of the form --key = value (without quotes in values), as in the following exemple:

[DEFAULT]
--core-url = https://[CORE-URL-API]
--user_activity-url = https://[USER-ACTIVITY-URL-API]
--provisioning-url = https://[PROVISIONING-URL-API]
--redteam-url = https://[REDTEAM-URL-API]
--cacert = <PATH TO CA CERT>
--cert = <PATH TO CLIENT CERT>
--key = <PATH TO CLIENT PRIVATE KEY>

Configuration through command line arguments (CLI only)

It is possible to configure access to the Cyber Range through command line arguments. See cyber_range --help command line output for available parameters:

$ cyber_range
(...)
  --core-url CORE_API_URL
                        Set core API URL (default: 'http://127.0.0.1:5000')
  --user_activity-url USER_ACTIVITY_API_URL
                        Set user activity API URL (default: 'http://127.0.0.1:5002')
  --provisioning-url PROVISIONING_API_URL
                        Set provisioning API URL (default: 'http://127.0.0.1:5003')
  --redteam-url REDTEAM_API_URL
                        Set redteam API URL (default: 'http://127.0.0.1:5004')
  --cacert CACERT       Set path to CA certs (default: None)
  --cert CERT           Set path to client cert (default: None)
  --key KEY             Set path to client key (default: None)

Configuration through programmatic means

It is possible to configure access to the Cyber Range programmatically in Python:

import cr_api_client.config import cr_api_client_config

# Set URL API
cr_api_client_config.core_api_url = "https://[CORE-URL-API]"
cr_api_client_config.user_activity_api_url = "https://[USER-ACTIVITY-URL-API]"
cr_api_client_config.provisioning_api_url = "https://[PROVISIONING-URL-API]"
cr_api_client_config.publish_api_url = "https://[PUBLISH-URL-API]"
cr_api_client_config.redteam_api_url = "https://[REDTEAM-URL-API]"

# Set server and client certificates for Core API
cr_api_client_config.cacert = "<PATH TO CA CERT>"
cr_api_client_config.cert = "<PATH TO CLIENT CERT>"
cr_api_client_config.key = "<PATH TO CLIENT PRIVATE KEY>"

Or by using environment variable before calling a script depending on cr_api_client python library:

export CORE_API_URL="https://[CORE-URL-API]"
export USER_ACTIVITY_API_URL="https://[USER-ACTIVITY-URL-API]"
export PROVISIONING_API_URL="https://[PROVISIONING-URL-API]"
export PUBLISH_API_URL="https://[PUBLISH-URL-API]"
export REDTEAM_API_URL="https://[REDTEAM-URL-API]"

./my_custom_client

CLI usage

See cyber_range --help command line output for available parameters:

$ cyber_range --help
(...)

Programmatic usage

Platform initialization API

Before starting a new simulation, the platform has to be initialized:

core_api.reset()
redteam_api.reset_redteam()

Simulation API

# Create a simulation from a topology
core_api.create_simulation_from_topology(topology_file: str)

# Create a simulation from a basebox ID
core_api.create_simulation_from_basebox(basebox_id: str)

# Start the simulation, with current time (by default) or time where the VM was created (use_vm_time=True)
core_api.start_simulation(id_simulation: int, use_vm_time: bool)

# Pause a simulation (calls libvirt suspend API)
core_api.pause_simulation(id_simulation: int)

# Unpause a simulation (calls libvirt resume API)
core_api.unpause_simulation(id_simulation: int)

# Properly stop a simulation, by sending a shutdown signal to the operating systems
core_api.halt_simulation(id_simulation: int)

# Stop a simulation through a hard reset
core_api.destroy_simulation(id_simulation: int)

# Clone a simulation and create a new simulation, and return the new ID
core_api.clone_simulation(id_simulation: int) -> int

# Delete a simulation in database
core_api.delete_simulation(id_simulation: int)

Provisioning API

# Apply provisioning configuration defined in YAML file on simulation defined in argument ID OR on machines defined in file
# ``wait`` parameter defines if the function wait for task to complete or not.

provisioning_execute(id_simulation: int = None,
                     machines_file: str = None,
                     provisioning_file: str,
                     debug: bool = False,
                     wait: bool = True,
                     ) -> Tuple[bool, str]:

# Apply ansible playbooks on specified target(s):
# ``wait`` parameter defines if the function wait for task to complete or not.

def provisioning_ansible(id_simulation: int = None,
                         machines_file: str = None,
                         playbook_path: str = None,
                         target_roles: List[str] = [],
                         target_system_types: List[str] = [],
                         target_operating_systems: List[str] = [],
                         target_names: List[str] = [],
                         extra_vars: str = None,
                         debug: bool = False,
                         wait: bool = True,
                         ) -> Tuple[bool, str]:

# Get status on targeted simulation
provisioning_api.provisioning_status(id_simulation: int)

# Get provisioning result on targeted simulation
provisioning_api.provisioning_result(id_simulation: int)

User activity API

user_activity_api.user_activity_play(id_simulation: int, user_activity_path: str,
                              debug_mode: str = 'off', speed: str = 'normal',
                              user_activity_file_results: str = None)

This method makes it possible to play user activities defined in user activity path on simulation defined in id_simulation. These parameters are mandatory.

The following parameters are optional:

  • debug_mode: This parameter has to be used for debug only. It corresponds to the level of verbosity of the debug traces generated during the execution of user actions:

    • 'off': no debug traces,
    • 'on': with debug traces,
    • 'full': with maximum debug traces.

    The default is 'off'. Debug traces are generated on the server side only.

  • speed: This parameter affects the speed of typing keys on the keyboard and the speed of mouse movement:

    • 'slow': slow speed,
    • 'normal': normal speed,
    • 'fast': fast speed.

    The default is 'normal'.

  • user_activity_file_results: This parameter makes it possible to get the user activity results (of user actions) in a file. Results are stored using a json format. The file name should be absolute ('/tmp/results.json' for example).

    Here an example:

    {
      "success": true,
      "scenario_results": [
          {
              "name": "user_activity.py",
              "success": true,
              "target": {
                  "name": "CLIENT1",
                  "role": "client",
                  "basebox_id": 70,
                  "ip_address": "localhost",
                  "vnc_port": 5901
              },
              "action_packs": {
                  "operating_system": "operating_system/windows7"
              },
              "action_list": [
                  {
                      "name": "open_session",
                      "parameters": {
                          "password": "7h7JMc67",
                          "password_error": "false",
                          "login": "John"
                      },
                      "start_time": "2021-03-01 12:39:25.119",
                      "end_time": "2021-03-01 12:39:57.325",
                      "success": true,
                      "implemented": true
                  },
                  {
                      "name": "close_session",
                      "parameters": {},
                      "start_time": "2021-03-01 12:40:02.330",
                      "end_time": "2021-03-01 12:40:09.303",
                      "success": true,
                      "implemented": true
                  }
              ]
          }
      ]
    }
    

Here are some examples of calling this method:

user_activity_api.user_activity_play(1, './user_activity/my_scenario') # this is the common way

user_activity_api.user_activity_play(1, './user_activity/my_scenario', scenario_file_results='/tmp/results.json')

user_activity_api.user_activity_play(1, './user_activity/my_scenario', debug_mode='full', speed='fast')

Redteam API

redteam_api.execute_scenario(attack_list: str)

This method executes sequentially each attack in list. For each attack this method displays started time and ending time (last_update).

redteam_api.execute_attack_name(attack_name: str,  waiting_worker: bool = True)

This method execute one attack, selected by name.

def init_knowledge(data: List[dict])

Load data into knowledge database.

Example :

[
  {"software":
    {"host_ip": "192.168.33.11",
    "software": {"category": "os"},
    "credentials":[{"username": "Administrateur", "password": "123pass"}]
    }
  }
]
def attack_infos(id_attack: str)

Get status and output for attack.

Example :

status = "success",
output = [
  {
  "attack_session": {
   "idAttackSession": 1,
   "source": "vffxlcationgreedinessb.com",
   "type": "powershell",
   "identifier": "d67672cb-8f64-420a-a7ba-1d33d7b7fd45",
   "privilege_level": 1,
   "idHost": 1
  }
 }
]

redteam_api.list_workers()

This method list all workers availabe in platform. List of attributes :

  • stability
  • reliability
  • side_effect
  • killchain_step : step in MITRE ATT&CK killchain
{
  "worker_id":"1548_002_001",
  "name":"uac_bypass",
  "description":"Use Metasploit uac bypass",
  "stability":"CRASH_SAFE",
  "reliability":"ALWAYS",
  "side_effect":"NETWORK_CONNECTION",
  "killchain_step":"privilege_escalation",
  "repeatable":false
}
redteam_api.list_attacks()

This method return all attack (available, successed or failed) with time information and origin. List of attributes :

  • idAttack : Identifier for attack action
  • status : Attack status (failed, success or runnable)
  • created_date
  • started_date
  • last_update : End time
  • values : Values send to the worker
  • output : Data generated by this attack
  • source: idAttack that created it

Here an example :

{
  "idAttack":13,
  "worker":
  {
    "worker_id":"1548_002_001",
    "name":"uac_bypass",
    "description":"Use Metasploit uac bypass",
    "stability":"FIRST_ATTEMPT_FAIL",
    "reliability":"ALWAYS",
    "side_effect":"NETWORK_CONNECTION",
    "killchain_step":"privilege_escalation",
    "repeatable":false
    },
  "status":"success",
  "created_date":"2021-04-21 10:33:00",
  "started_date":"2021-04-21 10:37:04",
  "last_update":"2021-04-21 10:37:06",
  "values":"{\"Host.ip\": \"192.168.2.101\", \"AttackSession.type\": \"windows/x64/meterpreter/reverse_tcp\", \"AttackSession.source\": \"192.168.2.66\", \"AttackSession.identifier\": \"1\"}",
  "output": "",
  "source":1}

In progress

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cr_api_client-4.1.0.tar.gz (68.5 kB view hashes)

Uploaded Source

Built Distribution

cr_api_client-4.1.0-py3-none-any.whl (77.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page