Skip to main content

A Python library for easily interacting with the Google Custom Search API

Project description

csecraft

The csecraft Python library allows you to easily interact with the Google Custom Search API. This library provides methods for executing search queries, retrieving search results, paginating through search results, and accessing search metadata. Additionally, the library includes utility methods for displaying and analyzing search results, making it an ideal tool for applications that require embedded search functionality.

Features

  • Search the web: Perform Google Custom Search queries.
  • Paginate: Navigate through multiple pages of search results.
  • Retrieve Results & Metadata: Access detailed search information, metadata, and page maps.
  • Get Snippets: Retrieve plain and HTML snippets for each result.
  • Spelling Suggestions: Receive corrected search queries when available.

Installation

To install this library, follow either of the following methods:

pip install csecraft

Or

git clone https://github.com/benkimz/csecraft.git
cd csecraft
pip install .

Prerequisites

To use this library, you'll need:

  • A Google Cloud Platform (GCP) project with the Custom Search API enabled.
  • A Custom Search Engine ID (CX) and an API Key.

Visit the Google Custom Search documentation for setup instructions.

Usage

Importing and Initializing the CustomSearchEngine

from cse-api import CustomSearchEngine

# Initialize the search engine with your API key and engine ID
api_key = "YOUR_API_KEY"
engine_id = "YOUR_ENGINE_ID"
search_engine = CustomSearchEngine(api_key, engine_id)

Performing a Search

query = "Python programming"
response = search_engine.search(query)

if response:
    print("Search Results:")
    search_engine.display_results()
else:
    print("No results found.")

Accessing Search Metadata

# Get total number of results
total_results = search_engine.get_total_results()
print(f"Total results: {total_results}")

# Get search time
search_time = search_engine.get_search_time()
print(f"Search time: {search_time} seconds")

Retrieving Results Information

# Get all items (results) from the search
items = search_engine.get_items()
for i, item in enumerate(items, start=1):
    print(f"{i}. Title: {item['title']}")
    print(f"   URL: {item['link']}")
    print(f"   Snippet: {item['snippet']}")
    print(f"   Display Link: {item['displayLink']}\n")

# Get promotions (if any)
promotions = search_engine.get_promotions()
for promo in promotions:
    print(f"Promotion: {promo['title']}, Link: {promo['link']}")

Fetching Corrected Query and Suggested Next Page

# Get spelling-corrected query, if available
corrected_query = search_engine.get_corrected_query()
if corrected_query:
    print(f"Did you mean: {corrected_query}?")

# Fetch search terms for the next page, if available
next_page_query = search_engine.get_next_page_query()
if next_page_query:
    print(f"Suggested terms for next page: {next_page_query}")

Pagination: Fetching Specific Pages

# Fetch results for a specific page
page_number = 2
page_response = search_engine.fetch_page(page_number)
if page_response:
    print(f"Results for page {page_number}:")
    search_engine.display_results()

Getting Plain and HTML Snippets

# Retrieve plain and HTML snippets for each result
snippets = search_engine.get_snippets()
for snippet, html_snippet in snippets:
    print("Plain Snippet:", snippet)
    print("HTML Snippet:", html_snippet)
    print()

API Reference

CustomSearchEngine

__init__(api_key: str, engine_id: str, base_url: str = "https://customsearch.googleapis.com/customsearch/v1")

Initialize the CustomSearchEngine with API key, engine ID, and an optional base URL.

search(query: str, **kwargs) -> Optional[CustomSearchResponse]

Perform a search with the given query and optional parameters.

  • query (str): The search term or phrase.
  • kwargs: Additional parameters, such as num, start, language, etc.
  • Returns: A CustomSearchResponse object with the search results.

get_total_results() -> int

Returns the total number of results found in the last search response.

get_search_time() -> float

Returns the time taken for the last query in seconds.

get_items() -> List[Dict[str, Any]]

Retrieves a list of dictionaries with title, link, snippet, and display link for each search result.

get_promotions() -> List[Dict[str, Any]]

Retrieves a list of promotions from the last response, if available.

get_corrected_query() -> Optional[str]

Returns a spelling-corrected query if the API provides a suggestion.

get_next_page_query() -> Optional[str]

Retrieves the search terms for the next page of results if available.

get_metadata() -> Dict[str, Any]

Returns metadata from the last search context.

get_pagemap_data() -> List[Dict[str, Any]]

Retrieves page map data (metadata, images, etc.) from search results.

fetch_page(page_number: int) -> Optional[CustomSearchResponse]

Fetches a specific page of results based on the page number.

  • page_number (int): The page number to fetch.
  • Returns: A CustomSearchResponse for the specified page or None if an error occurs.

display_results()

Prints a formatted display of the search results for easy viewing in the console.

last_search_info

Property returning a dictionary with a summary of the last search results, including total results, search time, and formatted total results.

get_snippets() -> List[Tuple[str, str]]

Returns a list of tuples containing plain and HTML snippets for each result.

Example Workflow

# Initialize the engine
search_engine = CustomSearchEngine(api_key="YOUR_API_KEY", engine_id="YOUR_ENGINE_ID")

# Perform a search
search_engine.search("machine learning")
search_engine.display_results()

# Access total results and search time
print(f"Total Results: {search_engine.get_total_results()}")
print(f"Search Time: {search_engine.get_search_time()}")

# Fetch snippets
snippets = search_engine.get_snippets()
for plain_snippet, html_snippet in snippets:
    print(f"Plain Snippet: {plain_snippet}")
    print(f"HTML Snippet: {html_snippet}")

License

This library is provided under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

csecraft-0.1.2.tar.gz (8.7 kB view details)

Uploaded Source

Built Distribution

csecraft-0.1.2-py3-none-any.whl (7.9 kB view details)

Uploaded Python 3

File details

Details for the file csecraft-0.1.2.tar.gz.

File metadata

  • Download URL: csecraft-0.1.2.tar.gz
  • Upload date:
  • Size: 8.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for csecraft-0.1.2.tar.gz
Algorithm Hash digest
SHA256 ddced776eb2bfda01c899a4cfdb3dbde7d7cbb7e676e6b929732f36a98f3cd04
MD5 7d0828aafd9736c730c3bbe992f1f291
BLAKE2b-256 2b279f4060cf1fdd090ab7975093ec7b1786de41ebe14d04eb10953bba63713d

See more details on using hashes here.

File details

Details for the file csecraft-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: csecraft-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 7.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for csecraft-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 8926c97213dbb5b0e356719e79e5a9aab8774746bbbc69f73f75f88db1706a9d
MD5 2afd789e2133b61f4f9a5ddaec7bf6f7
BLAKE2b-256 ab95752b34ff2a77846db64a6847ccf0d63645d8517ce620c96132be839e8817

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page