Skip to main content

A Python interface for CLP, CBC, and CGL

Project description

CyLP

CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use it to alter the solution process of the solvers from within Python. For example, you may define cut generators, branch-and-bound strategies, and primal/dual Simplex pivot rules completely in Python.

You may read your LP from an mps file or use the CyLP’s easy modeling facility. Please find examples in the documentation.

Docker

If you’re comfortable with Docker, you can get started right away with the container available on Dockerhub that comes with CyLP pre-installed.

https://hub.docker.com/repository/docker/coinor/cylp

Otherwise, read on.

Prerequisites and installation

On Windows: Installation as a binary wheel

On Windows, a binary wheel is available and it is not necessary to install Cbc. Just do:

$ python -m pip install cylp

On Linux/macOS: Installation as a binary wheel

Binary wheels are available for Linux and some versions of OS X for some versions of Python. To see if there is a wheel available for your platform, you can browse

https://pypi.org/project/cylp/#files

or just try:

$ python -m pip install cylp

In case this fails, it is most likely that there is no wheel for your platform. In particular, there are no wheels for MacOS running on Apple Silicon. If you are on Linux, this can probably be addressed by switching to a supported Python version with, e.g., conda:

$ conda create -n cylp python=3.9
$ conda activate cylp

If all else fails, it is easy to install from source, but Cbc must be installed first, as detailed below. The easiest route for this is to use conda.

On Linux/macOS with conda: Installation from source

To install from source, you will need to install binaries for Cbc or also build Cbc from source. The version should be 2.10 (recommended) or earlier (current master branch of Cbc will not work with this version of CyLP).

The following commands will create and activate a new conda environment with all these prerequisites installed:

$ conda create -n cylp coin-or-cbc cython numpy pkg-config scipy -c conda-forge
$ conda activate cylp

Now you can install CyLP from PyPI:

$ pip install --no-build-isolation cylp

(The option –no-build-isolation ensures that cylp uses the Python packages installed by conda in the build phase.)

Alternatively, if you have cloned CyLP from GitHub:

$ pip install --no-build-isolation .

On Linux/macOS with pip: Installation from source

You will need to install binaries for Cbc. The version should be 2.10 (recommended) or earlier (current master branch of Cbc will not work with this version of CyLP). You can install Cbc by either by installing with your system’s package manager, by downloading pre-built binaries, or by building yourself from source using coinbrew.

  1. To install Cbc in Linux, the easiest way is to use a package manager. Install coinor-libcbc-dev on Ubuntu/Debian or coin-or-Cbc-devel on Fedora, or the corresponding package on your distribution.

  2. On macOS, it is easiest to install Cbc with homebrew:

    $ brew install cbc pkg-config

You should no longer need to build Cbc from source on any platform unless for some reason, none of the above recipes applies to you. If you do need to build from source, please go to the Cbc project page and follow the instructions there. After building and installing, make sure to either set the COIN_INSTALL_DIR variable to point to the installation or set PKG_CONFIG_PATH to point to the directory where the .pc files are installed. You may also need to set either LD_LIBRARY_PATH (Linux) or DYLD_LIBRARY_PATH (macOS).

Next, build and install CyLP:

$ python -m pip install cylp

This will build CyLP install the runtime dependencies (install-requires), NumPy and SciPy <https://scipy.org> and build and install CyLP.

Testing your installation

Optional step:

If you want to run the doctests (i.e. make doctest in the doc directory) you should also define:

$ export CYLP_SOURCE_DIR=/Path/to/cylp

Now you can use CyLP in your python code. For example:

>>> from cylp.cy import CyClpSimplex
>>> s = CyClpSimplex()
>>> s.readMps('../input/netlib/adlittle.mps')
0
>>> s.initialSolve()
'optimal'
>>> round(s.objectiveValue, 3)
225494.963

Or simply go to CyLP and run:

$ python -m unittest discover

to run all CyLP unit tests (this is currently broken).

Modeling Example

Here is an example of how to model with CyLP’s modeling facility:

import numpy as np
from cylp.cy import CyClpSimplex
from cylp.py.modeling.CyLPModel import CyLPArray

s = CyClpSimplex()

# Add variables
x = s.addVariable('x', 3)
y = s.addVariable('y', 2)

# Create coefficients and bounds
A = np.matrix([[1., 2., 0],[1., 0, 1.]])
B = np.matrix([[1., 0, 0], [0, 0, 1.]])
D = np.matrix([[1., 2.],[0, 1]])
a = CyLPArray([5, 2.5])
b = CyLPArray([4.2, 3])
x_u= CyLPArray([2., 3.5])

# Add constraints
s += A * x <= a
s += 2 <= B * x + D * y <= b
s += y >= 0
s += 1.1 <= x[1:3] <= x_u

# Set the objective function
c = CyLPArray([1., -2., 3.])
s.objective = c * x + 2 * y.sum()

# Solve using primal Simplex
s.primal()
print(s.primalVariableSolution['x'])

This is the expected output:

Clp0006I 0  Obj 1.1 Primal inf 2.8999998 (2) Dual inf 5.01e+10 (5) w.o. free dual inf (4)
Clp0006I 5  Obj 1.3
Clp0000I Optimal - objective value 1.3
[ 0.2  2.   1.1]

Documentation

You may access CyLP’s documentation:

  1. Online : Please visit http://coin-or.github.io/CyLP/

  2. Offline : To install CyLP’s documentation in your repository, you need Sphinx (https://www.sphinx-doc.org/). You can generate the documentation by going to cylp/doc and run make html or make latex and access the documentation under cylp/doc/build. You can also run make doctest to perform all the doctest.

Who uses CyLP

The following software packages make use of CyLP:

  1. CVXPY, a Python-embedded modeling language for convex optimization problems, uses CyLP for interfacing to CBC, which is one of the supported mixed-integer solvers.

CyLP has been used in a wide range of practical and research fields. Some of the users include:

  1. PyArt, The Python ARM Radar Toolkit, used by Atmospheric Radiation Measurement (U.S. Department of energy).

  2. Meteorological Institute University of Bonn.

  3. Sherbrooke university hospital (Centre hospitalier universitaire de Sherbrooke): CyLP is used for nurse scheduling.

  4. Maisonneuve-Rosemont hospital (L’hôpital HMR): CyLP is used for physician scheduling with preferences.

  5. Lehigh University: CyLP is used to teach mixed-integer cuts.

  6. IBM T. J. Watson research center

  7. Saarland University, Germany

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cylp-0.92.3.tar.gz (171.3 kB view details)

Uploaded Source

Built Distributions

cylp-0.92.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

cylp-0.92.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

cylp-0.92.3-cp312-cp312-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

cylp-0.92.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

cylp-0.92.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

cylp-0.92.3-cp312-cp312-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

cylp-0.92.3-cp312-cp312-macosx_10_9_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

cylp-0.92.3-cp311-cp311-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

cylp-0.92.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

cylp-0.92.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (10.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

cylp-0.92.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

cylp-0.92.3-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

cylp-0.92.3-cp311-cp311-macosx_10_9_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

cylp-0.92.3-cp310-cp310-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

cylp-0.92.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

cylp-0.92.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (10.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

cylp-0.92.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

cylp-0.92.3-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

cylp-0.92.3-cp310-cp310-macosx_10_9_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

cylp-0.92.3-cp39-cp39-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

cylp-0.92.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

cylp-0.92.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (10.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

cylp-0.92.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

cylp-0.92.3-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

cylp-0.92.3-cp39-cp39-macosx_10_9_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

cylp-0.92.3-cp38-cp38-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

cylp-0.92.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

cylp-0.92.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (10.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

cylp-0.92.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

cylp-0.92.3-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

cylp-0.92.3-cp38-cp38-macosx_10_9_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

cylp-0.92.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

cylp-0.92.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (10.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

cylp-0.92.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

cylp-0.92.3-cp37-cp37m-macosx_10_9_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

cylp-0.92.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

cylp-0.92.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (9.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

cylp-0.92.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

cylp-0.92.3-cp36-cp36m-macosx_10_9_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file cylp-0.92.3.tar.gz.

File metadata

  • Download URL: cylp-0.92.3.tar.gz
  • Upload date:
  • Size: 171.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for cylp-0.92.3.tar.gz
Algorithm Hash digest
SHA256 9c4f686964a577558b5c7f637d19657e6364826c22c5cc3fe1d7bebb61961bd6
MD5 5cc0a69936ae1fa1ed126a7b582aff3a
BLAKE2b-256 a15212bb9144a35e5bbc4e0b64c71cd61949c71a28748890e035b2eb6b6c0595

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 edf55ea10049b4bf8815e08a484770e6eca53d7e1cb049d64c5aca638eef5a2e
MD5 01322f80cdc7d81d475f525f2e1e2cdc
BLAKE2b-256 b9ca352d28a5cf497c676dd988f03267a452462149850b4b13828e401b1a6a08

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 80bb2bc12e74ea89be6ff5043b5af368c5324ee177ad92c1832fd54be2983189
MD5 e5c718a8e94e85f4f833aa81d1f94529
BLAKE2b-256 7f8a07d159c888cd5d0a5525d21bd9a092861c31c6434b349ad8f3e7eacdcceb

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: cylp-0.92.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for cylp-0.92.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9728c7fbd914b58469eb4c153beb653431ec730355f1cc842418fdc34ac895d1
MD5 c733e7725960f1dec0f2616443af25ea
BLAKE2b-256 0703559e33d655b19b7a73fc5e8748a459b67014fc3b980eecff77896366fad0

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a413da3cb62f21e4c4e0943a9068f10cf5f45ca967eb77d868ce287d5249807
MD5 b6147d816cba49744077166061e68ffe
BLAKE2b-256 1ea4189c251d328bffa9593e20fd9d35ff3501b10b6e889ba4779b25fa1e2e02

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b314f03fcf1fa65c4f467c155bfab2b128a1473c856e27144298a7681ec4e882
MD5 19813a8b511a44c11bb4818c78d98328
BLAKE2b-256 1ac864181336baf77561cd40984931ad8213181728632a81a699fa631ae4d42b

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1007c64a1c85c91aad630e219c8599eec34a84db3d2c1f633c26f37f05d3130d
MD5 28a208a36443387ea3fa2bc7a4735a15
BLAKE2b-256 728ad20c3efc19e3414c3edd5c2f3d25f2dc965c0e5feca3a33e7d64096cc168

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d38c0df35d04a66a53d18943e6ec0f46bbe22c170e4c1ba1227eded1aac27cdf
MD5 3d20b9ad3cc5f9a9d9ecfdbab4ab6ffd
BLAKE2b-256 11fd24bc55f289f3363483d759830e5b76228e2889756c250519537da29a747b

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: cylp-0.92.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for cylp-0.92.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c16afe9d2a6df5412d8802e2892228bc66277ef02c5aca606ac55aac68ab2bcb
MD5 776988a911d80d88d2769f83d5e7127d
BLAKE2b-256 4257a9dae7f73a2a2c50e02a5c913f1ea9aa1a79931882b94e106003a2a0b741

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae5ecea786b973c7ade4d798731da369afb43923fcf96465ec2a7d5aa1aa1a8e
MD5 7d25f64f12f6427f12ebe8f826b56f95
BLAKE2b-256 8eca2b393f54f8f8af5adf77bfef2abbc066aa0a8bbd0a19ad348b9e51f8df85

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7d8ded7915bfe5cc0f6b7ca0747640e6416f384859b7d4cefda3eb4fe9bebf42
MD5 c533523f3c243ef55875038d81966795
BLAKE2b-256 afc39955d29d4eed7cb2cd2fbfdff7788191088900b5af7c477e99cbb01554a3

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 800938c0043ff544dd8cd2ef90cde27defc29eadb5d962662b665dab6ed4b609
MD5 6918de47afaca6d62dfe716ee06de2fa
BLAKE2b-256 d6e4bff828a968fc3da510731b78d65fbee6fffc10525fad9c8c514b06af457a

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 23fa85cb1ee336c95b4c0fb6f6e154acdb8ea5d73a9d4bb6c9238779b5f347a3
MD5 9db5b360df18386cddeabb24061bfec5
BLAKE2b-256 307c53c971dc57885ef93cbeb7bae5b708aaf1e2dcf957e32c3fcd4d8bbc9d8e

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 66923870c5e4ac0c5da4520a2766b53d5a6db77ea1e6f6f18f123fd720089984
MD5 9358a07042591bf1364d4189b3df9c7f
BLAKE2b-256 a18545bfe6fc94d9f2bae94319cdf3ec0f482d003d349a495e186d55bbd27611

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: cylp-0.92.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for cylp-0.92.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2571abdd4776af643060d3f2834211cecaff7c01b7a8ff67a963ebe413cc7a42
MD5 6bf517c6d5185e5e05b7136df7f284f6
BLAKE2b-256 75c57c60d97729d1a5355fb810a88191ae8b3f232453abe6db677e601d8aac02

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7854a8266a02723802f9b8d6d2c6ea7652d29bcc02a27d76d79e21e1d517dab1
MD5 29027901bf34ee86dcee89223bbbcddd
BLAKE2b-256 8c8f5de434bdcf4f5a211d5518cf39465192d864ef03aef5768b397c6c415b38

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3fd7e7ae58f151020c25f7abd8b4c93b9fef5f94fe98f85ad58fa60674365fa1
MD5 8341dcd56d4c2c0f35a4245897ab4b41
BLAKE2b-256 2cc9375b03087d4a92f6b550ba78c9cb650581afd6578eb1e2893e105235bb4a

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ef99deed7a1a7094c76b9692b42a008ef6ed7dbac256ca0c16131af301f6be29
MD5 e302ff6748aaf9a5312d1a6b73223796
BLAKE2b-256 66ae20a3af7f66cdeb00c2f244a6ad70faf1a555cd9bdf048cfee92a74187f51

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 473f31fc657298c6ce75ca281f85fca451ad3a4e767392cd8d1d9711acc743e2
MD5 9b7fe88038fd8bfc5f12a81bcd5f24e2
BLAKE2b-256 2a17c4065f8bde6d0726260028dbd3fd816bd51dd1c771b9c6fe46317ad884b0

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0c1fb4698c064282c9827648de56ee4b2af130d39267b351465dae6f1ad794a1
MD5 a765d87c0215a8ac8389d33fc2f7c069
BLAKE2b-256 55456dcc319ead737e98ccb68b53dd551cbfff42d77ec313b1e5de6bdd4a04c9

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: cylp-0.92.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for cylp-0.92.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 04676d326169b1c2e4c5aeaf3c91bd8876595e72834bb542dd90b0a771a08237
MD5 3e5f6b7a5ff0e94f7dc981e26fe59663
BLAKE2b-256 3479ec6bb89096f8125e200a36f013aa27a402991e874aadd9c5eab50ea72ba9

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26ae908824d3c061ea528a7547ea5b8b1a023df6060ef3ef975f8bbbcd82a18f
MD5 e5f573593346277965df59f06c981a56
BLAKE2b-256 9b5f239e50ec6e58c4e7f711db9197e6097887be1388056d9231feee8007bf1d

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 164560abea7d805a73eb8342b53d8530394cf99e8d21d1d13aac337f6e3fcbb5
MD5 6d973fa5c4cebf9317d9733d226fa229
BLAKE2b-256 dd4fc15909330d3266140752cc7b6cea174b722814de7c3258119a2c844048d7

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 028f2fb63d15a537def9050cae24eb69d0ce3d63d9d03b243f8ca609a20b811c
MD5 b51153d7940429e82af2d32741b459d0
BLAKE2b-256 9f34f0d7475a236679c2c7508669d64b74cdb49ac899cdb628bc77b200664abe

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2c7f3d190119563605beba3217b5a842d3af06f2a30b089887b92fbf7870084e
MD5 1f2a27774ab1b2090066592e899ece6b
BLAKE2b-256 98a4fea0a5d637019b8efa3e5fb2e75b80025a59a6520245faebb00ee24fc71b

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7df014a53c29ecf1d61f1c08b4e41cf988ab7daddf7ad7e069fde6f5860a1e92
MD5 de33c1318e48c4fa2f5e409a81547bc5
BLAKE2b-256 6a6512c30e7aafeb70adeaf0f30a45f2dd815eb22c6ba5302c7e73cf6106b001

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cylp-0.92.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for cylp-0.92.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0a365d86e566f2a1d8286aa1c37c86385ab3d5b4b667644bad5376fb2e4b4110
MD5 2aa64dd02ad99811ee46d3ebd083840c
BLAKE2b-256 6b4c06608b6ea681fdeef1f0e07be354aa41c4267d49d8ddd43087f4badbb401

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 526e9c8215e4069d35ef65cd756f9091120de8204ad7e0d62b0db05fac5e81bd
MD5 10a74f4240f4a7c401e37f9589b471d8
BLAKE2b-256 31e532e2621e06abdb8802956f747876e25b6664df89ed24854c01d2aa8ac5c3

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a88bac6540cf27648c33849c534b44f38b3d0930e030337fbefba9e2c510f99a
MD5 b0139aba85574a5528336d66e39b8a87
BLAKE2b-256 f0ea01cde633f674ec9dca58fd41ae558d9c2d58062cb72880366d481ca81103

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cebf94083e3e6d8b01dadcbfdcb3f4648e128b64aba6e7eab0dc6900c1092ea8
MD5 ed539f21789c8c4d357ee433bc217c2b
BLAKE2b-256 901ddfeef28d7c1aab3e18c203c8a351a76ad8f66eb1d25b903d2cba0e1f47da

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6593b106e23c5171ca2984f0f8611fa020e9f593fac34956497afd3dd175db66
MD5 20399fc43057f3de6172cab63dc1044f
BLAKE2b-256 092a5b2f5847be45272c41fdd81332d3a99335726df9b828b5d49f4506708e1d

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d704dab2eb600548bb5dc2e7e8f8832dc21f70e5720632b2839907c7bf91b57
MD5 d32831a64aacd4f06b82ab225402eaf0
BLAKE2b-256 e661f5e50b803e73ad63018ef01261bc8ab6a3a66e919034fabd0d7cda8d1073

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19610fa82a317dfaa5b3a0c4a6ac837fa7c7b2ca87e9d7a943f133d27c9c8262
MD5 b16d902c30f99c24062fbd482b55fb8f
BLAKE2b-256 35795e4235653f06fa97da674e3a832ff5bfbd1010a6346a9b3852434ff6d639

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 44f91c3710daa2e4cd14de165f8a473a75d3bda71839f50ef5333b116fe55ac5
MD5 557f9508eb5e5cfe19d572b8cdb3198d
BLAKE2b-256 86a86f7e5734807193c8fe04053fefe05d23e720bfd801273c505abeecb1bd56

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 595162d5679f8aa38b66ca20b61506894fddaddd5bddd9978eeb790eb055e009
MD5 659dd8def3c1ebd345dd71ebb9fd8b19
BLAKE2b-256 a8f329198250c22265b6af5f763f594bed14e2416ea88fed68688bbea41f0882

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db48f9107186b33fa664eb7dca25ae615b90b23651623f8cf6bb3518043081bf
MD5 f1f0e0d7ec44f209c9e628f92e715e3e
BLAKE2b-256 4a222de869047576a880045292264edea6b35b4cd8f2e09f6cd8417bc54f717c

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8dc71f70ef84edcd5966a7076f489604adcd92a14fdb4ca813a45e5d0c99e9e7
MD5 ef8ed05f88cedbfb6c94185aaf53710e
BLAKE2b-256 b94f0f74fae47e55f4539bd42e1d25a1eeba016cd5292d4bdeb7c9023f57a39a

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 47215b0d7a565bb3fa22e7f3182b5c29878a9ec8d5d5acb115ed0b716ad67bae
MD5 63edf971b0fcb322f184535b4736615b
BLAKE2b-256 f37240266c5f3de5fb3acac1b38e3769644ad859c9fb3e86a704a04fa1b1fa42

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2c41ad8e05ff24b637e576037f746965046a40646928ea1c9db02f93801ed36a
MD5 3710678143e49144ab6c1a85ea872d4e
BLAKE2b-256 41c8eb2e276812118c3f965c4a68e86a26a72fb990a98c45d48c7cfca7e828bc

See more details on using hashes here.

File details

Details for the file cylp-0.92.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cylp-0.92.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73adca6db3fe013f74c03cf42f5e31b76011e456e3116ac1ce28b6d8c5017635
MD5 79337b7a27cfa15c362cf2ec5cbf2688
BLAKE2b-256 a59c1151537e7cac04c3782778f83404add6ac9df18ad0b72d53a49aa82586a8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page