The notebooks for the competition Data Science Bowl 2019.
Project description
data_science_bowl_2019
The notebooks for the competition Data Science Bowl 2019
I join this competition data-science-bowl-2019, which ends on January 15, 2020. For the data feature, I do some work on the series features, using word2vec, LDA and node2vec.
The baseline feature engineering I forked from Hosseinali (2019). However, it helps me focus on series features. Also, I use LTSM model to elaborate series features, I forked from Grecnik (2019).
Grecnik. 2019. “Bowl Lstm Prediction | Kaggle.” Kaggle. 2019. https://www.kaggle.com/nikitagrec/bowl-lstm-prediction.
Hosseinali, Massoud. 2019. “A New Baseline for Dsb 2019 - Catboost Model.” Kaggle. 2019. https://www.kaggle.com/mhviraf/a-new-baseline-for-dsb-2019-catboost-model.
Install
pip install data_science_bowl_2019
How to use
See demo.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for data_science_bowl_2019-1.0.1.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | c3e84701b7268d91e830ea413f826174293723bf9c76a90c350fb0c71aa1a4b9 |
|
MD5 | 781d50e55c7f6ea56e0ac33785945467 |
|
BLAKE2b-256 | 03ce8b524121c7f9dafd2f90329b66a39e13fde301d47f1597dc21626c279d19 |
Hashes for data_science_bowl_2019-1.0.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 344104eee8f239775df73abc35a7f100516e379047df6bbe09a1b8073bcc7d25 |
|
MD5 | e51d0fb114089c3dbb4193fb6bf60773 |
|
BLAKE2b-256 | 6e188f6afffe30c10044671b63f28feab6af1270f2d1a5648042508ca8b9bf86 |