Manipulate data on Amazon S3 using Apache Hadoop filesystem compability
Project description
Data Lake Utility
Package to manipulate data from/into Amazon S3 using partitions compatible with Apache Hadoop filesystem. At this moment, this package was conceived to handle JSON and Parquet formats. That being said, it expects a Pandas DataFrame.
Data will be written into Amazon S3 as a multi-line JSON string, compressed as GZIP.
Features
Convert list of dictionaries...
[
{"brand": "Ford","model": "Mustang","year": 1965},
{"brand": "Pontiac","model": "GTO","year": 1964},
{"brand": "Lamborghini","model": "Miura","year": 1966}
]
...to multi-line JSON string
{"brand": "Ford","model": "Mustang","year": 1965}
{"brand": "Pontiac","model": "GTO","year": 1964}
{"brand": "Lamborghini","model": "Miura","year": 1966}
Manipulate data on Amazon S3 bucket based on schema, table and partitions
motor_vehicles/
`-- cars
|-- brand=Ford
| `-- year=1965
| `-- 34e40fce-444e-11ed-8e00-acde48001122.json
|-- brand=Pontiac
| `-- year=1964
| `-- a4eb3018-4458-11ed-b0e9-acde48001122.json
`-- brand=Lamborghini
`-- year=1966
`-- 2c0fea6c-444e-11ed-969f-acde48001122.json
How to use
This package does not slice data into partitions defined. You must handle slicing of data to write into partitions desired. The example below will assume the following file structure:
motor_vehicles/
`-- cars
`-- decade=1960s
`-- 2c0fea6c-444e-11ed-969f-acde48001122.json.gzip
from datalake_utils.utils import DataLake
import pandas
data = [
{
"brand": "Ford",
"model": "Mustang",
"year": 1965
},
{
"brand": "Pontiac",
"model": "GTO",
"year": 1964
},
{
"brand": "Lamborghini",
"model": "Miura",
"year": 1966
}
]
datalake = DataLake(
bucket_name="vehicles",
schema="motor_vehicles",
table="cars",
partitions=[
{
"key": "decade",
"value": "1960s"
}
],
)
datalake.append_to_s3(data=pandas.DataFrame(data), file_format="json")
retrieved_data = datalake.read_from_s3(file_format="json")
print(retrieved_data)
datalake.delete_from_s3()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.