{{ DESCRIPTION }}
Project description
A datapackage-pipelines processor to validate tabular resources using goodtables.
Install
# clone the repo and install it with pip git clone https://github.com/frictionlessdata/datapackage-pipelines-goodtables.git pip install -e .
Usage
Add the following to the pipeline-spec.yml configuration to validate each resource in the datapackage. A report is outputted to the logger.
...
- run: goodtables.validate
parameters:
fail_on_error: True,
reports_path: 'path/to/datapackage/reports', # where reports will be written
datapackage_reports_path: 'reports', # relative to datapackage.json
write_report: True,
goodtables:
<key>: <value> # options passed to goodtables.validate()
fail_on_error: An optional boolean to determine whether the pipeline should fail on validation error (default True).
reports_path: An optional string to define where Goodtables reports should be written (default is reports).
datapackage_reports_path: An optional string to define the path to the report, relative to the datapackage.json (see note below).
write_report: An optional boolean to determine whether a goodtables validation report should be written to reports_path (default is True).
goodtables: An optional object passed to goodtables.validate() to customise its behaviour. See `goodtables.validate() <https://github.com/frictionlessdata/goodtables-py/#validatesource-options>`__ for available options.
If reports are written, and datapackage_reports_path is defined, a reports property will be added to the datapackage, detailing the path to the report for each resource:
...
"reports": [
{
"resource": "my-resource",
"reportType": "goodtables",
"path": "path/to/my-resource.json"
}
]
It is recommended that datapackage_reports_path is used to define a relative path, from the datapackage.json file, that represents where the report was written. datapackage_reports_path does not define where the reports will be written, but helps ensure a correct path is defined in the reports property in datapackage.json. This is useful when the pipeline concludes with a dump_to.path processor.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file datapackage-pipelines-goodtables-0.0.2a0.tar.gz
.
File metadata
- Download URL: datapackage-pipelines-goodtables-0.0.2a0.tar.gz
- Upload date:
- Size: 6.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 58bf877a3dfad20bf6ab68b485c079c371a94b44c6c57f2fd489d9208e33e88f |
|
MD5 | f699e9f7375feaf15c1660602a6803ce |
|
BLAKE2b-256 | 850b2df9fec4a1c39cc26de60a4350ba2f53b47222a78fd05242ce9c1ae0aabc |
File details
Details for the file datapackage_pipelines_goodtables-0.0.2a0-py2.py3-none-any.whl
.
File metadata
- Download URL: datapackage_pipelines_goodtables-0.0.2a0-py2.py3-none-any.whl
- Upload date:
- Size: 6.6 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b8c178526871629fb15ae48e21cfeda17ac7ca6f6c2aa3ca0c62547ec5c9f4bb |
|
MD5 | 75542e4ed7250e88b6bf038a8689e566 |
|
BLAKE2b-256 | ad38cee64984c90d50e20ac1c27e7e39e16aa961d7ce9f66f50fee53b00c37b4 |