Detect spoofing attack
Project description
Anti spoofing with the Datasouls dataset
Dataset
ID & RD anti spoofing challenge
Four types of images:
- real
- replay
- printed
- mask2d
Training
Define the config.
Example at datasoluls_antispoof/configs
Define the environmental variable IMAGE_PATH
that points to the folder with the dataset.
Example:
export IMAGE_PATH=<path to the folder with images>
Inference
python -m torch.distributed.launch --nproc_per_node=<num_gpu> datasouls_antispoof/inference.py \
-i <path to images> \
-c <path to config> \
-w <path to weights> \
-o <output-path> \
--fp16
Pre-trained models
Models | Validation accuracy | Config file | Weights |
---|---|---|---|
swsl_resnext50_32x4d | 0.9673 | Link | Link |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for datasouls_antispoof-0.0.1.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6c096066ef32144a4f32e1499f882d34c95919826943c78c2efb41f9cb402991 |
|
MD5 | f38d65fdb7d5cf74951876422631e218 |
|
BLAKE2b-256 | 5fde28be69c78d6028770aac5b105fd4c2f55d83f3d8f8293734463b3c1e36df |
Close
Hashes for datasouls_antispoof-0.0.1-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d60740c74a2ef9d1f895ad14f7f6da78aaf4b56a8775d5f4dc8ae5d693b4ec37 |
|
MD5 | a194c5f442b5ffbafc094012a4a53fa2 |
|
BLAKE2b-256 | de06a5b2b21f04d08494b82d2fdfbc914d01aafd4440d0acf4168d84753cbe03 |