Detect spoofing attack
Project description
Anti spoofing with the Datasouls dataset
Dataset
ID & RD anti spoofing challenge
Four types of images:
- real
- replay
- printed
- mask2d
Training
Define the config.
Example at datasoluls_antispoof/configs
Define the environmental variable IMAGE_PATH
that points to the folder with the dataset.
Example:
export IMAGE_PATH=<path to the folder with images>
Inference
python -m torch.distributed.launch --nproc_per_node=<num_gpu> datasouls_antispoof/inference.py \
-i <path to images> \
-c <path to config> \
-w <path to weights> \
-o <output-path> \
--fp16
Pre-trained models
Models | Validation accuracy | Config file | Weights |
---|---|---|---|
swsl_resnext50_32x4d | 0.9673 | Link | Link |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for datasouls_antispoof-0.0.2.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 67e11fb9acd3d4dd6eb446bde864780552ce72dc914eaf259b8999b6b5d95794 |
|
MD5 | 430b19f4caba0d9f699f1e1616b68bfb |
|
BLAKE2b-256 | fdb692773cc8855040b4ba64ef22338d1c89901066bd5f74f610f27591acb4e2 |
Close
Hashes for datasouls_antispoof-0.0.2-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 579ffbd0a0d457cafb4c75eab502a058da9e3451fa9f7d59545b45917ad14da4 |
|
MD5 | 4893dbc923b5705c98c71d3f25723b03 |
|
BLAKE2b-256 | afb4d2b3594924c153549bf2829197646ce3f7d29fe745c715f80935f8c114bb |