Skip to main content

异步高并发dblp爬虫,慎用

Project description

dblp-crawler

Asynchronous high-concurrency dblp crawler, use with caution!

异步高并发dblp爬虫,慎用!

Crawl papers from dblp and connect them into an undirected graph. Each edge is a paper, each node is an author.

从dblp爬文章并将其组织为无向图。图的边是文章,节点是作者。

Install

pip install dblp-crawler

Usage

python -m dblp_crawler -h
usage: __main__.py [-h] [-y YEAR] -k KEYWORD [-p PID] [-j JOURNAL] {networkx,neo4j} ...

positional arguments:
  {networkx,neo4j}      sub-command help
    networkx            networkx help
    neo4j               neo4j help

optional arguments:
  -h, --help            show this help message and exit
  -y YEAR, --year YEAR  Only crawl the paper after the specified year.
  -k KEYWORD, --keyword KEYWORD
                        Specify keyword rules.
  -p PID, --pid PID     Specified author pids to start crawling.
  -j JOURNAL, --journal JOURNAL
                        Specify author journal keys to start crawling.
python -m dblp_crawler networkx -h
usage: __main__.py networkx [-h] --dest DEST

optional arguments:
  -h, --help   show this help message and exit
  --dest DEST  Path to write results.
python -m dblp_crawler neo4j -h   
usage: __main__.py neo4j [-h] [--auth AUTH] --uri URI

optional arguments:
  -h, --help   show this help message and exit
  --auth AUTH  Auth to neo4j database.
  --uri URI    URI to neo4j database.

Config environment variables

  • DBLP_CRAWLER_MAX_CACHE_DAYS_PERSON:
    • save cache for a person page for how many days
    • default: 30
  • DBLP_CRAWLER_MAX_CACHE_DAYS_JOURNAL:
  • DBLP_CRAWLER_MAX_CACHE_DAYS_JOURNAL_LIST
  • HTTP_PROXY
    • Set it http://your_user:your_password@your_proxy_url:your_proxy_port if you want to use proxy
  • HTTP_CONCORRENT
    • Concurrent HTTP requests
    • default: 8

Write to a JSON file

e.g. write to summary.json:

python -m dblp_crawler -k video -k edge -p l/JiangchuanLiu networkx --dest summary.json

JSON format

{
  "nodes": { // each node is a person
    "<dblp id of a person>": {
      "id": "<dblp id of this person>",
      "label": "<name in dblp>",
      "publications": [ // selected papers of this person (selected by "-k" and "-y" args)
        "<dblp id of a paper>",
        "<dblp id of a paper>",
        "<dblp id of a paper>",
        "......"
      ],
      "person": { // detailed data of this person
        "dblp_pid": "<dblp id of this person>",
        "name": "<name in dblp>",
        "affiliations": [
          "<affiliation of this person>",
          "<affiliation of this person>",
          "......"
        ],
        "publications": [ // all papers of this person
        "<dblp id of a paper>",
        "<dblp id of a paper>",
        "<dblp id of a paper>",
        "......"
        ]
      }
    },
    "<dblp id of a person>": { ...... },
    "<dblp id of a person>": { ...... },
    "<dblp id of a person>": { ...... },
    ......
  },
  "edges": { // each node is a cooperation of two person
    "<id of this edge>": {
      "from": "<dblp id of this person 1>",
      "to": "<dblp id of this person 2>",
      "publications": [ // selected papers that contain both this two persons as authors (selected by "-k" and "-y" args)
        "<dblp id of a paper>",
        "<dblp id of a paper>",
        "<dblp id of a paper>",
        "......"
      ],
      "cooperation": [ // all papers that contain both this two persons as authors (selected by "-k" and "-y" args)
        "<dblp id of a paper>",
        "<dblp id of a paper>",
        "<dblp id of a paper>",
        "......"
      ]
    },
    "publications": { // related publications
      "<dblp id of a paper>": {
      "key": "<dblp id of this paper>",
      "title": "<title of this paper>",
      "journal": "<name of the journal that this paper published on>",
      "journal_key": "<dblp id of the journal that this paper published on>",
      "year": "int <publish year of this paper>",
      "doi": "<doi of this paper>",
      "ccf": "A|B|C|N <CCF rank of this paper>",
      "authors": {
        "<dblp id of a person>": {
          "name": "<name in dblp>",
          "orcid": "<orcid of this person>"
        },
        "<dblp id of a person>": { ...... },
        "<dblp id of a person>": { ...... },
        ......
      },
      "selected": "true|false <whether the publication is selected (selected by -k and -y args)>"
      }
    }
  }
}

Write to a Neo4J database

docker pull neo4j
docker run --rm -it --name neo4j -p 7474:7474 -p 7687:7687 -v "$(pwd)/save/neo4j:/data" -e NEO4J_AUTH=none neo4j

e.g. write to neo4j://localhost:7687:

python -m dblp_crawler -k video -k edge -p l/JiangchuanLiu neo4j --uri neo4j://localhost:7687

Only crawl the paper after specified year

e.g. crawl the paper after 2016 (include 2016)

python -m dblp_crawler -k video -k edge -p l/JiangchuanLiu -y 2016 networkx --dest summary.json

Keywords with two or more words

e.g. super resolution (publications with title contains both "super" and "resolution" will be selected)

python -m dblp_crawler -k video -k edge -p l/JiangchuanLiu -k "'super','resolution'" networkx --dest summary.json

Init authors from journal

e.g. init authors from ACM MM and MMSys (db/conf/mm is the key for ACM MM in dblp: "https://dblp.org/db/conf/mm/index.xml", db/conf/mmsys is the key for MMSys in dblp: "https://dblp.org/db/conf/mmsys/index.xml")

python -m dblp_crawler -k video -k edge -j db/conf/mm -j db/conf/mmsys networkx --dest summary.json

Init authors from journal in some variables

e.g. there is a CCF_A in dblp_crawler.data contains keys of CCF A conferences, and MMSys is also great but not in CCF A

python -m dblp_crawler -k video -k edge -j "importlib.import_module('dblp_crawler.data').CCF_A" -j db/conf/mmsys networkx --dest summary.json

importlib.import_module is flexible, you can import your own variables through this.

Init authors in some variables

e.g. want to crawl publications of those authors stored in neo4j database

python -m dblp_crawler -k video -k edge -p "importlib.import_module('dblp_crawler.data').authors_in_neo4j('neo4j://localhost:7687')" networkx --dest summary.json

importlib.import_module is flexible, you can import your own variables through this.

dblp_crawler.filter Usage

Crawling papers takes a long time, so do not filter the papers in the crawling process. Instead, use a separate program dblp_crawler.filter` to filter the papers.

python -m dblp_crawler.filter -h                                                       
usage: __main__.py [-h] -i INPUT -o OUTPUT -f FILTER

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        Input file path.
  -o OUTPUT, --output OUTPUT
                        Output file path.
  -f FILTER, --filter FILTER
                        Filter functions.

Use internal filter

e.g. drop_old_publications is an internal function that drop publication by year

python -m dblp_crawler.filter -i summary.json -o summary.filter.json -f "lambda summary: drop_old_publications(summary, 2016)"

Use multiple filters

e.g. drop_old_publications is an internal function that drop publications by year; drop_nodes_by_all_publications is an internal function that drop nodes by the sum of publications

python -m dblp_crawler.filter -i summary.json -o summary.filter.json \
  -f "lambda summary: drop_old_person_publications(summary, 2018)" \
  -f "lambda summary: drop_old_cooperation(summary, 2018)" \
  -f "lambda summary: drop_nodes_by_all_publications(summary, 4)" \
  -f "lambda summary: drop_edges_by_all_publications(summary, 4)"

Use your own filter

e.g. another method to use -f "lambda summary: drop_old_publications(summary, 2016)"

python -m dblp_crawler.filter -i summary.json -o summary.filter.json -f "lambda summary: importlib.import_module('dblp_crawler.filter').drop_old_publications(summary, 2016)"

importlib.import_module is flexible, you can import your own variables through this.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dblp_crawler-2.0.tar.gz (34.4 kB view details)

Uploaded Source

File details

Details for the file dblp_crawler-2.0.tar.gz.

File metadata

  • Download URL: dblp_crawler-2.0.tar.gz
  • Upload date:
  • Size: 34.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for dblp_crawler-2.0.tar.gz
Algorithm Hash digest
SHA256 b962384785aa14bda6c48d16131a33c6bcc7b142ad452f51ce72e7562dceb20c
MD5 efcc17d866d9b0be82be70a55be6facc
BLAKE2b-256 484f64374ae2052a91409e4fdc4dcef8743dbb756a5a0912132f0f8b87f06634

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page