Skip to main content

No project description provided

Project description

dbm-database-service

Package can be used by in early stages of development to manage MySQL Database by adding and modifying tables and columns. The idea is that once we have .env file created, we can use it's mysqlpool credentials to connect into database. We are able to do it in automatic mode where .env file has to be store in same location where connector will be called, or we can use absolute path to a file.

Installation

PyPI

Using pip:

  pip install dbm-database-service

Using poetry:

  poetry add dbm-database-service

Using pipenv:

  pipenv install dbm-database-service

TESTS

Tests are automated, that means that you don't need to prepare .env files in desired places. They will be downloaded from Google Drive - feel free to inspect them. MySQL container also will be created, so no further set up is needed.

1. Make sure your docker is running and port 3306 is empty

2. Clone repository and enter main directory:

    git clone https://github.com/DSmolke/DBM_DataBase_Service.git
    cd DBM_DataBase_Service

3. Run tests using:

####Poetry:

    poetry update
    poetry shell    
    cd tests
    poetry run pytest -vv
  • update protects from decoding errors
  • tests take around 15s because of database and .env files

####Pipenv:

    pipenv shell 
    cd tests
    pipenv run pytest -vv

####Pip:

    pip install mysql-connector-python
    pip install python-dotenv
    pip install easyvalid-data-validator
    pip install gdown
    pip install pytest
    cd tests
    pytest -vv

Basic usage

Having existing database server, or mysql container, we want to create new table, add columns to existing table or do any operation on database.

###1. Step - prepare .env file Please download .env file template - > link

Edit file according to your needs.

POOL_NAME=TEST
POOL_SIZE=5
POOL_RESET_SESSION=True
HOST=localhost
DATABASE=test_db
USER=user
PASSWORD=user
PORT=3306

Copy its absolute path and keep it for later use.

###2. Step - Import all necessary objects

from dbm_database_service.models.column import Column
from dbm_database_service.models.table import Table
from dbm_database_service.models.datatype import DataType
from dbm_database_service.connectors import MySQLConnectionPoolBuilder
from dbm_database_service.managers import MySQLDatabaseManager

###3. Step - Create new MySQLConnectionPoolBuilder with prepared .env path

dbm1 = MySQLConnectionPoolBuilder(r'C:\Users\Omen i5\Desktop\PROJEKTY\dbm_database_service\tests\.env')

###4. Step - Create new MySQLDatabaseManager using object prepared in previous step

database_manager = MySQLDatabaseManager(dbm1.build())

###5. Step - Add new table into database:

database_manager.create_table(
    Table('jeans', [
        Column('id', datatype=DataType('int')),
        Column('brand', datatype=DataType('varchar', 255))
    ]))

###6. Step - Check your database, new table should be waiting for you!

Objects

Datatype

Contains valid MySQL datatype name with or without corresponding value

Variations examples:

int -> DataType('int')
varchar(255) -> DataType('varchar', 255)
decimal(5, 2) -> DataType('decimal', (5, 2))

Full code:

@dataclass
class DataType:
    """ Objects stores information that creates string representation of valid MySQL datatype"""
    name: str
    corresponding_value: tuple | int = None

    def __post_init__(self) -> None:
        """ Checks if name is valid for MySQL syntax and if corresponding value is valid to coexist with name """
        if self.name.upper() not in Settings.valid_mysql_datatypes:
            raise ValueError('Invalid datatype name')
        if self.corresponding_value is not None and self.name.upper() not in Settings.mysql_datatypes_with_corresponding_value:
            raise ValueError("Provided datatype shouldn't have corresponding value")

    def __str__(self) -> str:
        """ Will be parsed in other objects. Outcome is valid sql string describing datatype"""
        single_value = isinstance(self.corresponding_value, int)

        corresponding_value_str = "" if self.corresponding_value is None else \
            f"({self.corresponding_value if single_value else ', '.join([str(v) for v in self.corresponding_value])})"
        return f"{self.name}{corresponding_value_str}"

Column

Contain informations about MySQL column

Example:

Column('id', datatype=DataType('int'))

Full list of arguments:

    name: str
    datatype: DataType
    primary_key: bool = False
    autoincrement: bool = False
    unique: bool = False
    default: Any = None
    not_null: bool = False

Full code:

@dataclass
class Column:
    """ Needs minimum of name and datatype to parse and can be extended by primary key, autoincrement, unique, default, not_null"""
    name: str
    datatype: DataType
    primary_key: bool = False
    autoincrement: bool = False
    unique: bool = False
    default: Any = None
    not_null: bool = False

    def __post_init__(self) -> None:
        """ Validates if provided arguments are valid """
        namespaces = self.__dict__
        constraints = {
            "name": {Constraint.STRING_REGEX: r'^[a-zA-Z_][a-zA-Z0-9_]{1,64}$'},
            "primary_key": {Constraint.IS_TYPE: bool},
            "autoincrement": {Constraint.IS_TYPE: bool},
            "unique": {Constraint.IS_TYPE: bool},
            "not_null": {Constraint.IS_TYPE: bool}
        }
        validate_json_data(namespaces, constraints)

    def __str__(self):
        """ Will be parsed in other objects. Outcome is valid sql string describing column """
        return f"{self.name} {self.datatype}" \
               f"{' primary key' if self.primary_key else ''}" \
               f"{' autoincrement' if self.autoincrement else ''}" \
               f"{' unique' if self.unique else ''}" \
               f"{' not null' if self.not_null else ''}" \
               f"{f' default {self.default}' if self.default else ''}"

Table

Contains information of Table that we are willing to create

Example:

Table('cats', columns=[
    Column('id', datatype=DataType('int')),
    Column('name', datatype=DataType('varchar', 255))
])

Full list of arguments:

    name: str
    columns: list[Column]
    if_not_exist: bool = False
    temporary: bool = False

Full code:

@dataclass
class Table:
    name: str
    columns: list[Column]
    if_not_exist: bool = False
    temporary: bool = False

    def __str__(self) -> str:
        """ Will be parsed in other objects. Outcome is valid SQL Create Table expression """
        return f"create{' temporary' if self.temporary else ''} table" \
               f"{' if not exists' if self.if_not_exist else ''}" \
               f" {self.name}(" \
               f"{', '.join([str(c) for c in self.columns])});" \


    def drop_statement(self) -> str:
        """ Auxiliary method, that returns expression of sql drop table if exist with name stored in instance """
        return f"drop table if exists {self.name}"

    def alter_statement(self) -> str:
        """ Auxiliary method, that returns expression of sql alter table with name stored in instance """
        return f"alter table {self.name}"

Connectors

There are two types of connectors available. get_connection_pool and MySQLConnectionPoolBuilder. They differ in philosophy, but work on the same principle. To load environmental variables needed for db connection and return connection pool.

get_connection_pool

Example:

    get_connection_pool() -> function will look for .env file in same location
    # or
    get_connection_pool(<ABSOLUTE-PATH>) -> full path of .env file can be provided

MySQLConnectionPoolBuilder

Example:

    # The principle for .env path is same
    builder = MySQLConnectionPoolBuilder() -> function will look for .env file in same location
    
    # you can modify credentials during program flow
    builder.set_new_port(3307).add_new_password('password')

    # when you are ready, you can build connection pool
    database_manager = builder.build()

MySQLDatabaseManager

It works on connection pool and allows user to create, modify, drop tables as well as execute custom sql for development use

Methods:

_get_cursor_object:

Example:

     with self._get_cursor_object() as cur:
            cur.execute(str(sql))
            return cur.fetchall()

Context manager that allows us to work on 'with' statement to avoid problems when errors occur during operations on cursor

Full code:

        def _get_cursor_object(self):
        """ Custom context manager for db cursor. Uses object's connection pool to establish connection and later on cursor """
        connection_object = self._connection_pool.get_connection()
        try:
            if connection_object.is_connected():
                cursor_object = connection_object.cursor()
                yield cursor_object
                connection_object.commit()
        except Error as e:
            connection_object.rollback()
        finally:
            if connection_object.is_connected():
                cursor_object.close()
                connection_object.close()

create_table:

Example:

    database_manager.create_table(
    Table('jeans', [
        Column('id', datatype=DataType('int')),
        Column('brand', datatype=DataType('varchar', 255))
    ]))

Creates new table using Table instance.

Full code:

    def create_table(self, table: Table) -> None:
        """
        Creates table in database using Table instance as a provider of specification of the table
        :param table: Table instance
        :return: None
        """
        if not isinstance(table, Table):
            raise ValueError(f'Provided argument has to be Table object')
        with self._get_cursor_object() as cur:
            cur.execute(str(table))

drop_table_if_exists:

Example:

    database_manager.drop_table_if_exists('jeans')
    # or
    database_manager.drop_table_if_exists(
        Table('jeans', [
        Column('id', datatype=DataType('int')),
        Column('brand', datatype=DataType('varchar', 255))
    ]))

User can use Table object or table name to delete it from database

Full code:

def drop_table_if_exists(self, table: str | Table) -> None:
    """
    Drops a table if any exists in database. Does not cause error as long as connection is valid
    :param table: table name or Table instance
    :return: None
    """
    with self._get_cursor_object() as cur:
        if type(table) == str:
            cur.execute(f"drop table if exists {table}")
        elif isinstance(table, Table):
            cur.execute(table.drop_statement())
        else:
            raise ValueError(f'Provided argument has to be Table object')

add_columns:

Example:

    database_manager.drop_table_if_exists('jeans')
    # or
    database_manager.add_columns([
        Column('model', datatype=DataType('varchar', 255)),
        Column('price'', datatype=DataType('decimal', (5,2)))
    ])

User can use Column objects to add new columns into existing table

Full code:

def add_columns(self, table: str | Table, columns: list[Column]) -> None:
    """
    Ads columns into existing table. Can work on one or more Columns
    :param table: table name or Table instance
    :param columns: list of Column instances
    :return: None
    """
    if not all([True if isinstance(c, Column) else False for c in columns]):
        raise ValueError("Some values in 'columns' argument are not Column instances")
    add_statement = ", ".join([f"add column {str(c)}" for c in columns])
    with self._get_cursor_object() as cur:
        if type(table) == str:
            cur.execute(f"alter {table} {add_statement}")
        elif isinstance(table, Table):
            cur.execute(f"{table.alter_statement()} {add_statement}")
        else:
            raise ValueError(f'Provided argument has to be Table object')

dev_console:

Example:

    database_manager.dev_console('use test_tb;')

Method allows us to use custom sql statements.

Full code:

    def dev_console(self, sql: str) -> None:
        """ Utility made for custom development using sql syntax"""
        with self._get_cursor_object() as cur:
            cur.execute(str(sql))
            return cur.fetchall()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbm_database_service-0.2.4.tar.gz (7.8 kB view details)

Uploaded Source

Built Distribution

dbm_database_service-0.2.4-py3-none-any.whl (10.5 kB view details)

Uploaded Python 3

File details

Details for the file dbm_database_service-0.2.4.tar.gz.

File metadata

  • Download URL: dbm_database_service-0.2.4.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.11.3 Windows/10

File hashes

Hashes for dbm_database_service-0.2.4.tar.gz
Algorithm Hash digest
SHA256 85aebe5138ad52bb8cf23910669f8320250ec8faf88042220bc1eeaa8f5cbcfc
MD5 b3ce0d47cc4712df10630b013c94593a
BLAKE2b-256 7477635a45e69ee299dc238e188009421dfa0d24c444354da1f1f271c3374b6f

See more details on using hashes here.

File details

Details for the file dbm_database_service-0.2.4-py3-none-any.whl.

File metadata

File hashes

Hashes for dbm_database_service-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 cdbce7f0f3115b4848f159cd572ec31c58aaab8092ee7c73c4f82a51ab1befba
MD5 d12f0a9ef669cc3b1cba679f8af6bd33
BLAKE2b-256 00949eb76e44caebef4f6d5bd9dd5ced95db50c79e0818073df40a490e5c91f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page