Skip to main content

Encoding tools for DDHI

Project description

A collection of command-line utilities to assist in the creation of TEI-encoded oral history interviews. Part of the Dartmouth Digital History Initiative.

DDHI Encoder

The ddhi-encoder package is being developed to assist encoders in the DDHI project in encoding oral history interview transcripts in TEI. At present, it contains three command-line utilities:

  1. ddhi_convert: convert a Dartmouth DVP transcript from docx to tei.xml.

  2. ddhi_tag: perform named-entity tagging on a DDHI TEI transcription.

  3. ddhi_mentioned_places: extract places from stand-off markup for processing with OpenRefine

  4. ddhi_update_places: update places in stand-off markup

Installation

You can use pip to install this package:

pip install ddhi-encoder

To peform named-entity tagging with ddhi_tag, you will need a Spacy model. Before running ddhi_tag, install Spacy’s small English model:

python -m spacy download en_core_web_sm

See the Spacy documentation for more information.

Use

Use ddhi_convert to transform a DOCX-encoded transcription into a simply structured TEI document:

ddhi_convert ~/Desktop/transcripts/zien_jimmy_transcript_final.docx -o tmp.tei.xml

Use ddhi_tag to add named-entity tags to a TEI-encoded transcription:

ddhi_tag -o zien.tei.xml tmp.tei.xml

Encoders are then expected to edit the text of the interview, correcting automatically generated named-entity tags and adding new ones. when this phase of editing is complete, use ddhi_generate_standoff to create a <standOff> element in the interview and link the entities to names in the text.

Use ddhi_mentioned_places to extract the places in a TEI file’s standoff markup and print it as tab-separated values:

ddhi_mentioned_places lovely.tei.xml > lovely.tsv

Then use OpenRefine or another tool to refine this list with identifiers and other metadata.

Use ddhi_update_places to update the places in a TEI file’s standoff markup with identifiers and geo-coordinates obtained via OpenRefine or other procedure:

ddhi_update_places lovely.tei.xml lovely_updates.tsv >
updated_lovely.tei.xml

Similarly, use ddhi_mentioned_events and ddhi_update_events to perform the same operations for events.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

ddhi_encoder-1.2.3-py2.py3-none-any.whl (26.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file ddhi_encoder-1.2.3-py2.py3-none-any.whl.

File metadata

  • Download URL: ddhi_encoder-1.2.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 26.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.1

File hashes

Hashes for ddhi_encoder-1.2.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 6336fbe297018d77e35407b6ccda7f24efa32d4984aadd390826fc5743a47135
MD5 d2ab8c9f28f369507cbf70b58db77a9e
BLAKE2b-256 d6dbeb50ac56aa770c0ace9c5b1dde8dae00a10e437a416bba382b3e0ba552ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page