PyTorch implementation of Deep Factorization Machine Models
Project description
Factorization Machine models in PyTorch
This package provides a PyTorch implementation of Deep Factorization Machine ;odels and common datasets in Retail Recommendation.
Available Datasets
Available Models
Environment
conda env create -f environment_conda.yml
source activate environment_conda
Installation
pip install deep-rec
Example
python main.py --device cpu --epoch 2
API Documentation
https://rixwew.github.io/deep-rec (en construcción)
Licence
MIT
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
deep-rec-0.0.4.dev0.tar.gz
(6.0 kB
view details)
Built Distribution
File details
Details for the file deep-rec-0.0.4.dev0.tar.gz
.
File metadata
- Download URL: deep-rec-0.0.4.dev0.tar.gz
- Upload date:
- Size: 6.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4c896d948eab7713fa42d370022a8530c6eb6d8aa7cc4f0f7bda30b1d9bd2047 |
|
MD5 | 628b1ff035f292caca330bd093cc0809 |
|
BLAKE2b-256 | 0dd938586009d45954b48d0fe0d799cb64ad097337b04e4efbef970f4c7b0dab |
File details
Details for the file deep_rec-0.0.4.dev0-py3-none-any.whl
.
File metadata
- Download URL: deep_rec-0.0.4.dev0-py3-none-any.whl
- Upload date:
- Size: 7.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6d87c2406bd46d26563e89640cc1ec1be9a4747cf8dfa709f102fd08c069cb7e |
|
MD5 | 1a6989b47a684aaa6957b2b1ba7a8c11 |
|
BLAKE2b-256 | 38b0c544847e6d4526d38e823b099fc0fb3021b88b2999244ca52c7451806a63 |