Skip to main content

Deep Learning Preprocessing Library for Biological Data

Project description

DeepBioP

crates pypi cli license pypi version Actions status

Deep Learning Processing Library for Biological Data

Setup

Python

install the latest deepbiop version with:

pip install deepbiop

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

cargo add deepbiop --features fq

Each enabled feature can then be imported by its re-exported name, e.g.,

use deepbiop::fastq;

CLI

cargo install deepbiop-cli
dbp -h

Minimum Supported Rust Version (MSRV)

This project adheres to a Minimum Supported Rust Version (MSRV) policy. The Minimum Supported Rust Version (MSRV) is 1.75.0. We ensure that all code within the project is compatible with this version or newer to maintain stability and compatibility.

Contribute 🤝

Call for Participation: Deep Learning Processing Library for Biological Data

We are excited to announce the launch of a new open-source project focused on developing a cutting-edge deep learning processing library specifically designed for biological data. This project aims to empower researchers, data scientists, and developers to leverage the latest advancements in deep learning to analyze and interpret complex biological datasets.

Project Overview:

Biological data, such as genomic sequences, proteomics, and imaging data, presents unique challenges and opportunities for machine learning applications. Our library seeks to provide a comprehensive suite of tools and algorithms that streamline the preprocessing, modeling, and analysis of biological data using deep learning techniques.

Key Features:

  • Data Preprocessing: Efficient tools for cleaning, normalizing, and augmenting biological data.
  • Model Building: Pre-built models and customizable architectures tailored for various types of biological data.
  • Visualization: Advanced visualization tools to help interpret model predictions and insights.
  • Integration: Seamless integration with popular bioinformatics tools and frameworks.
  • APIs: Rust and Python APIs to facilitate easy integration with different deep learning frameworks, ensuring efficient operations across platforms.

Who Should Participate?

We invite participation from individuals and teams who are passionate about bioinformatics, deep learning, and open-source software development. Whether you are a researcher, developer, or student, your contributions can help shape the future of biological data analysis.

How to Get Involved:

  • Developers: Contribute code, fix bugs, and develop new features.
  • Researchers: Share your domain expertise and help validate models.
  • Students: Gain experience by working on real-world data science problems.
  • Community Members: Provide feedback, report issues, and help grow the user community.

Join Us:

If you are interested in participating, please visit our GitHub repository at Github to explore the project and get started.

Contact Us:

For more information or questions, feel free to contact us at [yangyang.li@norwestern.edu]. We look forward to your participation and contributions to this exciting project!

Together, let's advance the field of biological data analysis with the power of deep learning!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepbiop-0.1.10.tar.gz (426.0 kB view details)

Uploaded Source

Built Distributions

deepbiop-0.1.10-cp39-abi3-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.9+ Windows x86-64

deepbiop-0.1.10-cp39-abi3-win32.whl (3.4 MB view details)

Uploaded CPython 3.9+ Windows x86

deepbiop-0.1.10-cp39-abi3-musllinux_1_2_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ x86-64

deepbiop-0.1.10-cp39-abi3-musllinux_1_2_i686.whl (4.1 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ i686

deepbiop-0.1.10-cp39-abi3-musllinux_1_2_armv7l.whl (4.2 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ ARMv7l

deepbiop-0.1.10-cp39-abi3-musllinux_1_2_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ ARM64

deepbiop-0.1.10-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

deepbiop-0.1.10-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (4.0 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARMv7l

deepbiop-0.1.10-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARM64

deepbiop-0.1.10-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl (4.1 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.12+ i686

deepbiop-0.1.10-cp39-abi3-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

deepbiop-0.1.10-cp39-abi3-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9+ macOS 10.12+ x86-64

File details

Details for the file deepbiop-0.1.10.tar.gz.

File metadata

  • Download URL: deepbiop-0.1.10.tar.gz
  • Upload date:
  • Size: 426.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for deepbiop-0.1.10.tar.gz
Algorithm Hash digest
SHA256 a8cd67bef11800c0dafbc8c1e39aff7ca84ed693e83a670c373f37f66431fd4c
MD5 079f14fe7a21fe9644c8473c17e8267c
BLAKE2b-256 46c07d8fdb762cdd0272c584e7839b0f557ca55524034dacbd6700f1c218ea2e

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.10-cp39-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.10-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 6de96e8fb77abc2ec73496bd19579095640b728842398cf24dcbf34c9274a5e1
MD5 f4b54711ec1a97a1ed651173931463c3
BLAKE2b-256 e0bc7f1bdd0c2cf19172f38c1645e5ea52e66c64a2e18f733be4949698b11c1a

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.10-cp39-abi3-win32.whl.

File metadata

  • Download URL: deepbiop-0.1.10-cp39-abi3-win32.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9+, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for deepbiop-0.1.10-cp39-abi3-win32.whl
Algorithm Hash digest
SHA256 90237afd1b28cd1663b8ab9fcafbbd9c89e0dd3f1c8309da6f36aaa7d450dc51
MD5 21b7deb282503bf4ffce694c043b8d8a
BLAKE2b-256 f5176052cd64be2f0d99f257c3a2392d482063fcd4568a9785a1e590dc29794a

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.10-cp39-abi3-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.10-cp39-abi3-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 002f9bf0ae9b469407d004e4694937844854c019aaed20e07a24743c265654fd
MD5 6ff366dce54b316d0439c1ecfd190433
BLAKE2b-256 e09b432eedf4b71ec0db1730a2ad4c214b582dde3afe2bf54c239726d10a313c

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.10-cp39-abi3-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.10-cp39-abi3-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 10d8aec3c0d37dfdace7e3165987cd51196825bf82b87400c4fd0fea2c262bb3
MD5 481bcce9100b642198a78e308f83893b
BLAKE2b-256 b529679bb1a1aa50765778cd8d1fdfeee1db2a1309e72b428443bcdcb4aa6785

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.10-cp39-abi3-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.10-cp39-abi3-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 6b7e7f855bca2b5c88e790f13086fff4396e6a4604ecdb4b0972f1f1ab956f47
MD5 68be461d035cf89e89192db09fb6e06d
BLAKE2b-256 bb7cc292e834641726ffe7081fbf21441a6139ab8262ee2220a1ae928f9a572d

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.10-cp39-abi3-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.10-cp39-abi3-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 7862ccbe41aba880bcca0573ec79de35bef3d2d65c548c2bb00c6678c29a1bc3
MD5 0a8335b5ffdf2d7109cf7615e6ecc51d
BLAKE2b-256 262b3037696400e25041dbb1533d760061b709d396d21b21e7c146f4485347a0

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.10-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.10-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b2909f646cae8ce9992f0d21e27169ab8646e9b02475b50327b8d21d189939e
MD5 86f10e19cfbe2fc6e2b86914bb35b612
BLAKE2b-256 0219bd6959d56778580e59642fce8d48777294dba2152551d0ddf77b8e3a19af

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.10-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.10-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 1653d58d6b5c28555d5c8e48f7be099d5881d69d5757aad6d916823059d57356
MD5 e2cec002cdbf2c7c6a50f49d57389cc1
BLAKE2b-256 f0acae481324d65374cc3aa3d5da833c3642fb24a3078a22f30a834738f78f76

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.10-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.10-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f982587cc85fc493fa2eae29cd90e58a814e616dd0df2d59e8fe57c9f1ccfa74
MD5 d632418a3422d74d3a8ec9b62f4fa483
BLAKE2b-256 60ed3df1ac3515dadd18486777562ef6caace7e46b4115daf807ac5be4a0ab77

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.10-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.10-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3a36623e63e827d17e2d3d8426c66c1347531b2e0d71cea5dbfbc49810325e0a
MD5 acb65991753114bec238b040b00512b8
BLAKE2b-256 ec3d2113b931d891292e1b9a80013773049aac6b4e5cd3df926cd594941108a7

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.10-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.10-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f591d64ad00c4d61d8c804b872029572bbfc88ad9e56359b64f2cf22a1f0b56e
MD5 04030558087a9b1989cbd35cbd9376e4
BLAKE2b-256 f81051c8d4940f52666f96283fba665bdcb0485b936c93d42922e59a653d1a84

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.10-cp39-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.10-cp39-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 719fff8014f021206b199c7b92fd5d2c412a127ff1771c69dfaabdea49df6ae4
MD5 d24f526e5008f654a0d478397fbc9372
BLAKE2b-256 873f40e1b758906e1a7a702960639820929cef583274dea939aee9310adef1f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page