Skip to main content

Deep Learning Preprocessing Library for Biological Data

Project description

DeepBioP

Deep Learning Processing Library for Biological Data

Setup

Python

install the latest deepbiop version with:

pip install deepbiop

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

cargo add deepbiop --features fq

Each enabled feature can then be imported by its re-exported name, e.g.,

use deepbiop::fastq;

Minimum Supported Rust Version (MSRV)

This project adheres to a Minimum Supported Rust Version (MSRV) policy. The Minimum Supported Rust Version (MSRV) is 1.70.0. We ensure that all code within the project is compatible with this version or newer to maintain stability and compatibility.

Contribute 🤝

Call for Participation: Deep Learning Processing Library for Biological Data

We are excited to announce the launch of a new open-source project focused on developing a cutting-edge deep learning processing library specifically designed for biological data. This project aims to empower researchers, data scientists, and developers to leverage the latest advancements in deep learning to analyze and interpret complex biological datasets.

Project Overview:

Biological data, such as genomic sequences, proteomics, and imaging data, presents unique challenges and opportunities for machine learning applications. Our library seeks to provide a comprehensive suite of tools and algorithms that streamline the preprocessing, modeling, and analysis of biological data using deep learning techniques.

Key Features:

  • Data Preprocessing: Efficient tools for cleaning, normalizing, and augmenting biological data.
  • Model Building: Pre-built models and customizable architectures tailored for various types of biological data.
  • Visualization: Advanced visualization tools to help interpret model predictions and insights.
  • Integration: Seamless integration with popular bioinformatics tools and frameworks.
  • APIs: Rust and Python APIs to facilitate easy integration with different deep learning frameworks, ensuring efficient operations across platforms.

Who Should Participate?

We invite participation from individuals and teams who are passionate about bioinformatics, deep learning, and open-source software development. Whether you are a researcher, developer, or student, your contributions can help shape the future of biological data analysis.

How to Get Involved:

  • Developers: Contribute code, fix bugs, and develop new features.
  • Researchers: Share your domain expertise and help validate models.
  • Students: Gain experience by working on real-world data science problems.
  • Community Members: Provide feedback, report issues, and help grow the user community.

Join Us:

If you are interested in participating, please visit our GitHub repository at Github to explore the project and get started.

Contact Us:

For more information or questions, feel free to contact us at [yangyang.li@norwestern.edu]. We look forward to your participation and contributions to this exciting project!

Together, let's advance the field of biological data analysis with the power of deep learning!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepbiop-0.1.6.tar.gz (412.8 kB view details)

Uploaded Source

Built Distributions

deepbiop-0.1.6-cp39-abi3-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9+ Windows x86-64

deepbiop-0.1.6-cp39-abi3-win32.whl (3.4 MB view details)

Uploaded CPython 3.9+ Windows x86

deepbiop-0.1.6-cp39-abi3-musllinux_1_2_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ x86-64

deepbiop-0.1.6-cp39-abi3-musllinux_1_2_i686.whl (4.1 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ i686

deepbiop-0.1.6-cp39-abi3-musllinux_1_2_armv7l.whl (4.2 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ ARMv7l

deepbiop-0.1.6-cp39-abi3-musllinux_1_2_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ ARM64

deepbiop-0.1.6-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

deepbiop-0.1.6-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (4.0 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARMv7l

deepbiop-0.1.6-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARM64

deepbiop-0.1.6-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl (4.0 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.12+ i686

deepbiop-0.1.6-cp39-abi3-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

deepbiop-0.1.6-cp39-abi3-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9+ macOS 10.12+ x86-64

File details

Details for the file deepbiop-0.1.6.tar.gz.

File metadata

  • Download URL: deepbiop-0.1.6.tar.gz
  • Upload date:
  • Size: 412.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for deepbiop-0.1.6.tar.gz
Algorithm Hash digest
SHA256 d71ea7e4353ca677d553241157e1c4231249e7b9ca5395105e6cc477dd5b9f59
MD5 339183d23b7f6586970dbcc5a8b69d5d
BLAKE2b-256 118db3fbb0b668795dc45708891e629d7952255a9ee9f7ba9e54633845a4e7c8

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.6-cp39-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.6-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 4b40fbf651ff4329684bb54af71d5951b90e514c1df05bc78e0e9e7cb34759f1
MD5 5b4329a8f99cceabf76e3ede3da7e779
BLAKE2b-256 c8aab3e14357c9fdbbd89d68b4884fc8a0d5fb58bd731c7ca31ab0707bd6cea9

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.6-cp39-abi3-win32.whl.

File metadata

  • Download URL: deepbiop-0.1.6-cp39-abi3-win32.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9+, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for deepbiop-0.1.6-cp39-abi3-win32.whl
Algorithm Hash digest
SHA256 860fdb1223ff489f1329ee68db2a4ce8a46b622a43db0df9af463edd7fac319b
MD5 9a13802248f84e843fd8cc6ca1c02d45
BLAKE2b-256 8054bfbe0d2f6a004b4f9180657b067a240872aea59cdc2093a771e5e2261f75

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.6-cp39-abi3-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.6-cp39-abi3-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3513ce5c2d3778ce777194d72f6ac58c450e6f15735eae37a04d9d1b5efafb8f
MD5 921964080c1d1aeae23cb28a4c7776da
BLAKE2b-256 19f1cd451fffc434b57ac8b084660835a1c4fce16b99936e4b3f278ed710328f

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.6-cp39-abi3-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.6-cp39-abi3-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 aec343b0975c3efb86702e303b2616bf2f397ac02bc383b4fb49ea1ff9c5f998
MD5 f8fee3c2be206f02ae5aaf8c58bb15f6
BLAKE2b-256 399cc31cdfe9baa050317e721b8b9f58063afa79fe6d14aa657e96881d406586

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.6-cp39-abi3-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.6-cp39-abi3-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 ecf92944a74d41c9fb135ce2157b3929d252cac2a60d148f82654861bc1bdd2e
MD5 8d147cd1ae645a8ac3ebd43d8c751e83
BLAKE2b-256 570e79a4f877350ca99ba51eb6a211a9876df76282a1b1ab23fd11d5da87eacc

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.6-cp39-abi3-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.6-cp39-abi3-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9d8be86a759ab1af41d0d3660851cd80572c7bbe7f2fd1cc2f73118a60780ae7
MD5 dfc1b0540b1875be08f0caf01fc08d5d
BLAKE2b-256 4efa61287b5311812fd4a8b8c766ea72e57beb98527a0e00d6c9a873ef7164c4

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.6-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.6-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef820bdf20279df3cdb1a7b58085b5a326e562f59f05f5abd5cb899fba5efde1
MD5 b23fd2e83206395478ea343e24d0034d
BLAKE2b-256 7b055446d011dc9cff06d16c2a2dfd3c4cc18580725fa4257ddb3770812c72ff

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.6-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.6-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 54f7bf5eebd61c0dd463f7bbbbb18e040071d130823dcb74fe5659494b00b3dd
MD5 fbbcec87851698b99d01c9fd96228c3c
BLAKE2b-256 158b031e4b025c9bfcb4c71f7e6a5852f0419d97ef7dfeddc8fdf863444cb170

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.6-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.6-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 99620e44a9f7609a8dddd22f4970e1e684a12cf855a0d737e6c6406dd97ebcc5
MD5 3118fbf86fbf00203bfa57735a14e8b5
BLAKE2b-256 326bf26f0dab0827e2494631431968636b047cd64800dda45c82c479aa1a5af1

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.6-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.6-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9deaa2432e2357bf5216272904bb9c123d276577aa2c850ee5f3a3b9a04566ef
MD5 7fb3db7d89e8fd588bf7078f78d5bc93
BLAKE2b-256 fc54de25c9f274f8105b680cafceded57b8f629605d47fa42f30dd7e119745f8

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.6-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.6-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5626f9b1793906f5f3412dabf2383713ecff7c81fa29dfbd7edbc32049463635
MD5 f0f161b2da783981b8ed8cebf5624823
BLAKE2b-256 429bec1fe0e172385b84cbb89513dea7f694b802905fecb6d7233d562161679d

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.6-cp39-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.6-cp39-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 b27729acdbb7b22f30e9eeea2d14a06b0475ec21f4cb518292c65ee01a97cda7
MD5 a2633b6da8acfb1402eb7c020d3af53d
BLAKE2b-256 ff26fbea615696988c733436d214862d5c0ea7bc2547aa5af9ac6ab43a3c5303

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page