Skip to main content

Deep Learning Preprocessing Library for Biological Data

Project description

DeepBioP

Deep Learning Processing Library for Biological Data

Setup

Python

install the latest deepbiop version with:

pip install deepbiop

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

cargo add deepbiop --features fq

Each enabled feature can then be imported by its re-exported name, e.g.,

use deepbiop::fastq;

Minimum Supported Rust Version (MSRV)

This project adheres to a Minimum Supported Rust Version (MSRV) policy. The Minimum Supported Rust Version (MSRV) is 1.70.0. We ensure that all code within the project is compatible with this version or newer to maintain stability and compatibility.

Contribute 🤝

Call for Participation: Deep Learning Processing Library for Biological Data

We are excited to announce the launch of a new open-source project focused on developing a cutting-edge deep learning processing library specifically designed for biological data. This project aims to empower researchers, data scientists, and developers to leverage the latest advancements in deep learning to analyze and interpret complex biological datasets.

Project Overview:

Biological data, such as genomic sequences, proteomics, and imaging data, presents unique challenges and opportunities for machine learning applications. Our library seeks to provide a comprehensive suite of tools and algorithms that streamline the preprocessing, modeling, and analysis of biological data using deep learning techniques.

Key Features:

  • Data Preprocessing: Efficient tools for cleaning, normalizing, and augmenting biological data.
  • Model Building: Pre-built models and customizable architectures tailored for various types of biological data.
  • Visualization: Advanced visualization tools to help interpret model predictions and insights.
  • Integration: Seamless integration with popular bioinformatics tools and frameworks.
  • APIs: Rust and Python APIs to facilitate easy integration with different deep learning frameworks, ensuring efficient operations across platforms.

Who Should Participate?

We invite participation from individuals and teams who are passionate about bioinformatics, deep learning, and open-source software development. Whether you are a researcher, developer, or student, your contributions can help shape the future of biological data analysis.

How to Get Involved:

  • Developers: Contribute code, fix bugs, and develop new features.
  • Researchers: Share your domain expertise and help validate models.
  • Students: Gain experience by working on real-world data science problems.
  • Community Members: Provide feedback, report issues, and help grow the user community.

Join Us:

If you are interested in participating, please visit our GitHub repository at Github to explore the project and get started.

Contact Us:

For more information or questions, feel free to contact us at [yangyang.li@norwestern.edu]. We look forward to your participation and contributions to this exciting project!

Together, let's advance the field of biological data analysis with the power of deep learning!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepbiop-0.1.7.tar.gz (414.4 kB view details)

Uploaded Source

Built Distributions

deepbiop-0.1.7-cp39-abi3-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9+ Windows x86-64

deepbiop-0.1.7-cp39-abi3-win32.whl (3.4 MB view details)

Uploaded CPython 3.9+ Windows x86

deepbiop-0.1.7-cp39-abi3-musllinux_1_2_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ x86-64

deepbiop-0.1.7-cp39-abi3-musllinux_1_2_i686.whl (4.1 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ i686

deepbiop-0.1.7-cp39-abi3-musllinux_1_2_armv7l.whl (4.2 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ ARMv7l

deepbiop-0.1.7-cp39-abi3-musllinux_1_2_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ ARM64

deepbiop-0.1.7-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

deepbiop-0.1.7-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (4.0 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARMv7l

deepbiop-0.1.7-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARM64

deepbiop-0.1.7-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl (4.0 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.12+ i686

deepbiop-0.1.7-cp39-abi3-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

deepbiop-0.1.7-cp39-abi3-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9+ macOS 10.12+ x86-64

File details

Details for the file deepbiop-0.1.7.tar.gz.

File metadata

  • Download URL: deepbiop-0.1.7.tar.gz
  • Upload date:
  • Size: 414.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for deepbiop-0.1.7.tar.gz
Algorithm Hash digest
SHA256 256cb92919dbcf8fc8fd7eefa7ef8e107f6c065b071ab483907c829768afd451
MD5 57fb349542ddef7361ae69aab6be536e
BLAKE2b-256 84b2bfb2013c630e949c154ff69c976799c23285ae3755c8cb6a462b82a5f646

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.7-cp39-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.7-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 14c04d93ae01a5e887bedeb86d37a289a18b62f4136e07955199acd58e3b3cd3
MD5 8ae0a40c53e45bae2db7d99ba47d60c5
BLAKE2b-256 a0c83b9604b1b865b2dff471db2ff7f73a7b623a381daa58490a24634f852fc0

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.7-cp39-abi3-win32.whl.

File metadata

  • Download URL: deepbiop-0.1.7-cp39-abi3-win32.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9+, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for deepbiop-0.1.7-cp39-abi3-win32.whl
Algorithm Hash digest
SHA256 cad7bbf132a9c5d57af05c46d7afaa48bf4f85e357f60ff453cd510ba3c2e21f
MD5 d0f25b98ecaec2b17093500a43d7e3be
BLAKE2b-256 721db0945d0bf25f2b2052991f0a2146d10aacec5b80270b1f414ed6f7aab863

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.7-cp39-abi3-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.7-cp39-abi3-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 902e9baf3513f1d949ef5a14a7f89b78bf433104a0978ce9fa293774e514edbc
MD5 256456f88f2fd2c680d695e1fafec2ad
BLAKE2b-256 216a06d836a54159606d30c63ff3a204854ec1b8ae6dc95e2a32b3c3a37a2ed3

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.7-cp39-abi3-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.7-cp39-abi3-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b4e050c5ff7f5a31f8668d4721d025d1c7e20cae7cc75b7b8c6872ccb4f30a6d
MD5 43746606711b72a29a673d446e52d329
BLAKE2b-256 62c3f7240926957aa26163031c200ae9c6a1ec6e0be58e1f0d627ec58b04ba08

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.7-cp39-abi3-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.7-cp39-abi3-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 356ba285f1e562bcc59ff2160ef5ecca3d5cc4d967977cfdbb00e43933a02d56
MD5 7052ee848aac37831e03ae4b59388686
BLAKE2b-256 bef252c340ba4191948fb00b5a80e5654da389c8c745c6887e9e79daea39e2d8

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.7-cp39-abi3-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.7-cp39-abi3-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 854663911fbd74ef5d0039df3161dcc5e10e5ce69ac50cd38a5cb4d6d442f805
MD5 fff7ac03e15850de0991e1f9503383fb
BLAKE2b-256 e69687d02668f1a60cd33e42373bda4c281634b10880fef62935b0d005cce9d1

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.7-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.7-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c3539988424b9adbf0d21d6211a2f191f4f1602f4679d463deff02d558efaf7
MD5 bc4fc2011d3d59930e139fa79a2af623
BLAKE2b-256 e339555d67c480219df13051b63a25cce5ebdbd6e4359ea007276c89bdc6a73d

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.7-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.7-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 e8e5d84167984a207b6fcbff0051ed7c7ff2bd4574263e2fced49651c0c04162
MD5 e41ca29ca9cf8844a812ba971a4bf2b9
BLAKE2b-256 0731dac37182bf903aef79b65273aef258e643c212ef38a7ebd91c4fef8e8b5e

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.7-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.7-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e510f94378dff03a95dad975ed11f96afcf15bb5eebf0829eaad9968fc36c0e9
MD5 ddd03cd2683c86aebede358da3b11823
BLAKE2b-256 970a8b52948a5fe844145f29cb8b36713eba991d3a3a2e48f54aeb4c4523d5d8

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.7-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.7-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f187a417b62ad586b871e79bd59ab749c60fe3941dbe00e3ee4faa89def386de
MD5 72a81ccb457ddd173b249d347eec14fc
BLAKE2b-256 525159bf7c22e51a1d9b8e53269593bccc7cb5d48f69ba21cbd04e7d98975362

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.7-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.7-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ac648577bfb4d9b46a492112536b51b71d155bd907b367f96ece320d2cd7285c
MD5 5aa61032ef79afda13f3559d771048f0
BLAKE2b-256 1dea71f54859ef1dc30b900d7a06415fff3cff9a9130b2211356e66bf7cca7b3

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.7-cp39-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.7-cp39-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9458e8106614b07dae6864b54f799af45e11c4ca82365da3635efa08bbdaf059
MD5 0c9acff7845b220018c8087c118e27b7
BLAKE2b-256 24ebde1bb514023d96d5f45d880e35e730991e7294304fe4ea467f431433f0ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page