Skip to main content

Deep Learning Preprocessing Library for Biological Data

Project description

DeepBioP

crates pypi cli license pypi version Actions status

Deep Learning Processing Library for Biological Data

Setup

Python

install the latest deepbiop version with:

pip install deepbiop

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

cargo add deepbiop --features fq

Each enabled feature can then be imported by its re-exported name, e.g.,

use deepbiop::fastq;

CLI

cargo install deepbiop-cli
dbp -h

Minimum Supported Rust Version (MSRV)

This project adheres to a Minimum Supported Rust Version (MSRV) policy. The Minimum Supported Rust Version (MSRV) is 1.75.0. We ensure that all code within the project is compatible with this version or newer to maintain stability and compatibility.

Contribute 🤝

Call for Participation: Deep Learning Processing Library for Biological Data

We are excited to announce the launch of a new open-source project focused on developing a cutting-edge deep learning processing library specifically designed for biological data. This project aims to empower researchers, data scientists, and developers to leverage the latest advancements in deep learning to analyze and interpret complex biological datasets.

Project Overview:

Biological data, such as genomic sequences, proteomics, and imaging data, presents unique challenges and opportunities for machine learning applications. Our library seeks to provide a comprehensive suite of tools and algorithms that streamline the preprocessing, modeling, and analysis of biological data using deep learning techniques.

Key Features:

  • Data Preprocessing: Efficient tools for cleaning, normalizing, and augmenting biological data.
  • Model Building: Pre-built models and customizable architectures tailored for various types of biological data.
  • Visualization: Advanced visualization tools to help interpret model predictions and insights.
  • Integration: Seamless integration with popular bioinformatics tools and frameworks.
  • APIs: Rust and Python APIs to facilitate easy integration with different deep learning frameworks, ensuring efficient operations across platforms.

Who Should Participate?

We invite participation from individuals and teams who are passionate about bioinformatics, deep learning, and open-source software development. Whether you are a researcher, developer, or student, your contributions can help shape the future of biological data analysis.

How to Get Involved:

  • Developers: Contribute code, fix bugs, and develop new features.
  • Researchers: Share your domain expertise and help validate models.
  • Students: Gain experience by working on real-world data science problems.
  • Community Members: Provide feedback, report issues, and help grow the user community.

Join Us:

If you are interested in participating, please visit our GitHub repository at Github to explore the project and get started.

Contact Us:

For more information or questions, feel free to contact us at [yangyang.li@norwestern.edu]. We look forward to your participation and contributions to this exciting project!

Together, let's advance the field of biological data analysis with the power of deep learning!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepbiop-0.1.9.tar.gz (426.6 kB view details)

Uploaded Source

Built Distributions

deepbiop-0.1.9-cp39-abi3-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.9+ Windows x86-64

deepbiop-0.1.9-cp39-abi3-win32.whl (3.4 MB view details)

Uploaded CPython 3.9+ Windows x86

deepbiop-0.1.9-cp39-abi3-musllinux_1_2_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ x86-64

deepbiop-0.1.9-cp39-abi3-musllinux_1_2_i686.whl (4.1 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ i686

deepbiop-0.1.9-cp39-abi3-musllinux_1_2_armv7l.whl (4.2 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ ARMv7l

deepbiop-0.1.9-cp39-abi3-musllinux_1_2_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ ARM64

deepbiop-0.1.9-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

deepbiop-0.1.9-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (4.0 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARMv7l

deepbiop-0.1.9-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARM64

deepbiop-0.1.9-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl (4.1 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.12+ i686

deepbiop-0.1.9-cp39-abi3-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

deepbiop-0.1.9-cp39-abi3-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9+ macOS 10.12+ x86-64

File details

Details for the file deepbiop-0.1.9.tar.gz.

File metadata

  • Download URL: deepbiop-0.1.9.tar.gz
  • Upload date:
  • Size: 426.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for deepbiop-0.1.9.tar.gz
Algorithm Hash digest
SHA256 4a97cae53ac49c48ff14aa8bf76b04b44a53efc8986341ba76d4990766262d51
MD5 5fefe578a329c44c244b4637a50b5597
BLAKE2b-256 b394156ef9d87f95ed92d1e6cb2672cda7f74e333a705ecfd20cb1cd0a657584

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.9-cp39-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.9-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 459315adb9d6f1f44916d28807147b0dc59db66b543e80db4801e39f8e9d0204
MD5 b3fc3e1f29cf326d71f327381e8c6dbb
BLAKE2b-256 3e535971fbb56d5dd40dd8184f543b1f01c325f065a2f2841733f2cc23a37786

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.9-cp39-abi3-win32.whl.

File metadata

  • Download URL: deepbiop-0.1.9-cp39-abi3-win32.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9+, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for deepbiop-0.1.9-cp39-abi3-win32.whl
Algorithm Hash digest
SHA256 d74949d0b3a8cd55b015199a27114ae83a1b76d719087e10d2ed58254cb2391d
MD5 f21f2c1f9534753c8caeae2bc82325b5
BLAKE2b-256 5897c6acce2abeb9fa16905cbf024809b1fe4be2e43563a3b002af6e2dd01872

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.9-cp39-abi3-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.9-cp39-abi3-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9adfb2eb81e359d9fd0075ec116f93a2db94b00ada2aa4248dbc4908bf0ed3ed
MD5 f89a6277ccc5fe0489331ba9c7fc7a29
BLAKE2b-256 9c27db413696684ef4db95e3a83029ef47e84858b14710c4d3e1f7e0cf06a506

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.9-cp39-abi3-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.9-cp39-abi3-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 6fb5bd68c14f45c555f9a0be374fbb7655d211118d30bc412f54c844cbd1cea4
MD5 60df7b6afc41deb0861476ee9be543a3
BLAKE2b-256 e6af197cf81b0da8aaac3751dde423cb1496ecb434d6e8614d9230ccec3e5b88

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.9-cp39-abi3-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.9-cp39-abi3-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 810a27bead31147f7f3a88dee685b7c9566f1d9fdf792753c1dc996a4991e718
MD5 cb4bba11e2e720879c2db1b7a6f7d115
BLAKE2b-256 7ab81086f16cc572b521b9a4dd0e38082cb29af0143d18c18794771e9a178676

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.9-cp39-abi3-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.9-cp39-abi3-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 630dc75c935b73a0c8f84d83763040d939cc85899ba4fba6277fe069dafba8f2
MD5 087d149478b5d08079200ba7344639c1
BLAKE2b-256 0a2f398d48a5f3eaa65970ca5168a793ab9c883c6f87e84db82183bc8dbee9a8

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.9-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.9-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 759bf35bf9c12c7d45faa729809b41af6212a606ff74b93d35066948b846a67e
MD5 7f3c990d368314896543390d456d3c16
BLAKE2b-256 000435ac6a23c47eec01b65bb497666dbd594fac47a0aa8433c3201a6017e989

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.9-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.9-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 736a888673046100867000a96f42bf5877b465f2fdb887ce4b9908559ec4e9cc
MD5 09970da517d80cd6010405aa2a8af222
BLAKE2b-256 e5c6dc2e2387faed02a3129f6a6c2ebbcb6e0e59b6c0ab00a07082cda742f380

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.9-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.9-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1697ca4ed7f29075d42ed53d6f6bab0808612a328cf825697f0d4515f9bb9745
MD5 d8de7fe3d4473eff90e8e05bde4a4995
BLAKE2b-256 7fd927930e1c009d2ce6d4cb759936144d54302e421a20cc25f9218c73970125

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.9-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.9-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 46c1c889fccc22208407f9ab4f4d3064e13b9158ec7dc39604fd1c0a163ea5c0
MD5 d6b47b85e477f983ed81b7076bacfba1
BLAKE2b-256 8e40b853f13b809820c7b2facdc1bf51dc9bbb279a1fc45f8db3f9ff2698aa21

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.9-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.9-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 053cb8c9a270ab4917a737dc5862b21e688a63f1af2b6066d5172f5eaaa029c8
MD5 884c15734b119235b6a59e22165581bb
BLAKE2b-256 c917ab39be7f7f09b499483420c7a0dbddcacf1d9271c5a70bf6334e478a4d63

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.9-cp39-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.9-cp39-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ff4dd9b7481140464a99d0c6c99da741e66a36b04dc66e583e3284ede082ff3c
MD5 9f9f086e5ab2ab79cf3d76f63f621017
BLAKE2b-256 77e98933fa13cbee8df8dd3c626a0de73d9155d68c59e92cc3383399675490fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page