Skip to main content

Easy-to-use,Modular and Extendible package of deep learning based CTR(Click Through Rate) prediction models with PyTorch

Project description

DeepCTR-Torch

Python Versions Downloads PyPI Version GitHub Issues

Documentation Status CI status codecov Disscussion License

PyTorch version of DeepCTR.

DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can be used to build your own custom model easily.You can use any complex model with model.fit()and model.predict() .Install through pip install -U deepctr-torch.

Let's Get Started!(Chinese Introduction)

Models List

Model Paper
Convolutional Click Prediction Model [CIKM 2015]A Convolutional Click Prediction Model
Factorization-supported Neural Network [ECIR 2016]Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction
Product-based Neural Network [ICDM 2016]Product-based neural networks for user response prediction
Wide & Deep [DLRS 2016]Wide & Deep Learning for Recommender Systems
DeepFM [IJCAI 2017]DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
Piece-wise Linear Model [arxiv 2017]Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction
Deep & Cross Network [ADKDD 2017]Deep & Cross Network for Ad Click Predictions
Attentional Factorization Machine [IJCAI 2017]Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks
Neural Factorization Machine [SIGIR 2017]Neural Factorization Machines for Sparse Predictive Analytics
xDeepFM [KDD 2018]xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
Deep Interest Network [KDD 2018]Deep Interest Network for Click-Through Rate Prediction
Deep Interest Evolution Network [AAAI 2019]Deep Interest Evolution Network for Click-Through Rate Prediction
AutoInt [CIKM 2019]AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
ONN [arxiv 2019]Operation-aware Neural Networks for User Response Prediction
FiBiNET [RecSys 2019]FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction
IFM [IJCAI 2019]An Input-aware Factorization Machine for Sparse Prediction
DCN V2 [arxiv 2020]DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems
DIFM [IJCAI 2020]A Dual Input-aware Factorization Machine for CTR Prediction
AFN [AAAI 2020]Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions

DisscussionGroup & Related Projects

公众号:浅梦学习笔记 微信:deepctrbot 学习小组 加入 主题集合
公众号 微信 学习小组

Main Contributors(welcome to join us!)

pic
Shen Weichen

Alibaba Group

pic
Zan Shuxun

Alibaba Group

pic
Wang Ze

Meituan

pic
Zhang Wutong

Tencent

pic
Zhang Yuefeng

Peking University

pic
Huo Junyi

University of Southampton

pic
Zeng Kai

SenseTime

pic
Chen K

NetEase

pic
Cheng Weiyu

Shanghai Jiao Tong University

pic
Tang

Tongji University

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepctr-torch-0.2.8.tar.gz (43.3 kB view details)

Uploaded Source

Built Distribution

deepctr_torch-0.2.8-py3-none-any.whl (70.2 kB view details)

Uploaded Python 3

File details

Details for the file deepctr-torch-0.2.8.tar.gz.

File metadata

  • Download URL: deepctr-torch-0.2.8.tar.gz
  • Upload date:
  • Size: 43.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.4.2 requests/2.25.0 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.5

File hashes

Hashes for deepctr-torch-0.2.8.tar.gz
Algorithm Hash digest
SHA256 b0c4b7e18b79e9a47a0f3f059fd0bd65189b9256c3bf3e838fcb19e8b50668c9
MD5 ff91a052d4d8750017a5909434b5f679
BLAKE2b-256 cd0d12b3070df7adcf59cc5e121318868050c5ea5afca565aecd375539032584

See more details on using hashes here.

Provenance

File details

Details for the file deepctr_torch-0.2.8-py3-none-any.whl.

File metadata

  • Download URL: deepctr_torch-0.2.8-py3-none-any.whl
  • Upload date:
  • Size: 70.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.4.2 requests/2.25.0 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.5

File hashes

Hashes for deepctr_torch-0.2.8-py3-none-any.whl
Algorithm Hash digest
SHA256 f32cc10698c3b217523c37e90fb83f3199884cbb72ddb371de95fbb4f163cedd
MD5 1365917d46b8a765f90fa6b885ff46f1
BLAKE2b-256 cacc4aeaae8cd0903918fe98fd930524dbc7077d5e08a7ce57056fa4d4470e06

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page