Skip to main content

Deep Face Analysis Framework for Face Recognition and Demography

Project description

deepface

Downloads

Deepface is a lightweight facial analysis framework including face recognition and demography (age, gender, emotion and race) for Python. You can apply facial analysis with a few lines of code. It plans to bridge a gap between software engineering and machine learning studies.

Installation

The easiest way to install deepface is to download it from PyPI.

pip install deepface

Face Recognition

Verify function under the DeepFace interface is used for face recognition.

from deepface import DeepFace
result = DeepFace.verify("img1.jpg", "img2.jpg")

print("Is verified: ", result["verified"])

Modern face recognition pipelines consist of 4 stages: detect, align, represent and verify. Deepface handles all these common stages in the background.

Each call of verification function builds a face recognition model from scratch and this is a costly operation. If you are going to verify multiple faces sequentially, then you should pass an array of faces to verification function to speed the operation up. In this way, complex face recognition models will be built once.

dataset = [
	['dataset/img1.jpg', 'dataset/img2.jpg'],
	['dataset/img1.jpg', 'dataset/img3.jpg']
]
result = DeepFace.verify(dataset)

Face recognition models

Face recognition can be handled by different models. Currently, VGG-Face , Google FaceNet, OpenFace and Facebook DeepFace models are supported in deepface. The default configuration verifies faces with VGG-Face model. You can set the base model while verification as illustared below. Accuracy and speed show difference based on the performing model.

vggface_result = DeepFace.verify("img1.jpg", "img2.jpg") #default is VGG-Face
#vggface_result = DeepFace.verify("img1.jpg", "img2.jpg", model_name = "VGG-Face") #identical to the line above
facenet_result = DeepFace.verify("img1.jpg", "img2.jpg", model_name = "Facenet")
openface_result = DeepFace.verify("img1.jpg", "img2.jpg", model_name = "OpenFace")
deepface_result = DeepFace.verify("img1.jpg", "img2.jpg", model_name = "DeepFace")

VGG-Face has the highest accuracy score but it is not convenient for real time studies because of its complex structure. FaceNet is a complex model as well. On the other hand, OpenFace has a close accuracy score but it performs the fastest. That's why, OpenFace is much more convenient for real time studies.

Similarity

These models actually find the vector embeddings of faces. Decision of verification is based on the distance between vectors. Distance could be found by different metrics such as Cosine Similarity, Euclidean Distance and L2 form. The default configuration finds the cosine similarity. You can alternatively set the similarity metric while verification as demostratred below.

result = DeepFace.verify("img1.jpg", "img2.jpg", model_name = "VGG-Face", distance_metric = "cosine")
result = DeepFace.verify("img1.jpg", "img2.jpg", model_name = "VGG-Face", distance_metric = "euclidean")
result = DeepFace.verify("img1.jpg", "img2.jpg", model_name = "VGG-Face", distance_metric = "euclidean_l2")

Facial Attribute Analysis

Deepface also offers facial attribute analysis including age, gender, emotion (including angry, fear, neutral, sad, disgust, happy and surprise)and race (including asian, white, middle eastern, indian, latino and black) predictions. Analysis function under the DeepFace interface is used to find demography of a face.

from deepface import DeepFace
demography = DeepFace.analyze("img4.jpg") #passing nothing as 2nd argument will find everything
#demography = DeepFace.analyze("img4.jpg", ['age', 'gender', 'race', 'emotion']) #identical to the line above
#demographies = DeepFace.analyze(["img1.jpg", "img2.jpg", "img3.jpg"]) #analyzing multiple faces same time

print("Age: ", demography["age"])
print("Gender: ", demography["gender"])
print("Emotion: ", demography["dominant_emotion"])
print("Race: ", demography["dominant_race"])

Streaming and Real Time Analysis

You can run deepface for real time videos as well. Calling stream function under the DeepFace interface will access your webcam and apply both face recognition and facial attribute analysis. Stream function expects a database folder including face images. VGG-Face is the default face recognition model and cosine similarity is the default distance metric similar to verify function. The function starts to analyze if it can focus a face sequantially 5 frames. Then, it shows results 5 seconds.

from deepface import DeepFace
DeepFace.stream("/user/database")

Even though face recognition is based on one-shot learning, you can use multiple face pictures of a person as well. You should rearrange your directory structure as illustrated below.

user
├── database
│   ├── Alice
│      ├── Alice1.jpg
│      ├── Alice2.jpg
│   ├── Bob
│      ├── Bob.jpg

BTW, you should use regular slash ( / ) instead of backslash ( \ ) in Windows OS while passing the path to stream function. E.g. DeepFace.stream("C:/User/Sefik/Desktop/database").

API

Deepface offers an API as well. You can clone /api/api.py and pass it to python command as an argument. This will get a rest service up.

python api.py

The both face recognition and facial attribute analysis are covered in the API. You are expected to call these functions as post methods. Service endpoints will be http://127.0.0.1:5000/verify for face recognition and http://127.0.0.1:5000/analyze for facial attribute analysis. You should pass input images as base64 encoded string in this case. Here, you can find a postman project.

Playlist

Deepface is mentioned in this youtube playlist.

Disclaimer

Reference face recognition models have different type of licenses. This framework is just a wrapper for those models. That's why, licence types are inherited as well. You should check the licenses for the face recognition models before use.

Herein, OpenFace is licensed under Apache License 2.0. FB DeepFace and Facenet is licensed under MIT License. The both Apache License 2.0 and MIT license types allow you to use for commercial purpose.

On the other hand, VGG-Face is licensed under Creative Commons Attribution License. That's why, it is restricted to adopt VGG-Face for commercial use.

Support

There are many ways to support a project - starring⭐️ the GitHub repos is just one.

You can also support this project through Patreon.

Licence

Deepface is licensed under the MIT License - see LICENSE for more details.

Logo is created by Adrien Coquet. Licensed under Creative Commons: By Attribution 3.0 License.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepface-0.0.19.tar.gz (20.7 kB view details)

Uploaded Source

Built Distribution

deepface-0.0.19-py3-none-any.whl (26.2 kB view details)

Uploaded Python 3

File details

Details for the file deepface-0.0.19.tar.gz.

File metadata

  • Download URL: deepface-0.0.19.tar.gz
  • Upload date:
  • Size: 20.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.4

File hashes

Hashes for deepface-0.0.19.tar.gz
Algorithm Hash digest
SHA256 c08ca653a7edc568d6935e97032e65f20223c33c6d8424443e2fe50829a1a82a
MD5 8b09bf66a5774b0014c7f49ee51fd123
BLAKE2b-256 232e9bc9194f72baeb8fa6d5fa84f47bf09cef6ffe8596744fd405a5452f7656

See more details on using hashes here.

File details

Details for the file deepface-0.0.19-py3-none-any.whl.

File metadata

  • Download URL: deepface-0.0.19-py3-none-any.whl
  • Upload date:
  • Size: 26.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.4

File hashes

Hashes for deepface-0.0.19-py3-none-any.whl
Algorithm Hash digest
SHA256 82b526858a81fb08e0fd354e76827f0181f49cdaa26a21a71e189988be36942b
MD5 f836bd0e28fe1ec94d0f66312ffda20c
BLAKE2b-256 3db36759577fa74fcd21882beac7c8e018cac7f2b807ebc660d9de02b817dfc5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page