Aeromagnetic Data Compensation for Magnetic Interference
Project description
deinterf
Based on the Tolles-Lawson (T-L) aeromagnetic compensation model, this tool compensates for the aircraft's own magnetic interference in aeromagnetic survey data. Future enhancements may include magnetic vector compensation, nonlinear methods, neural network approaches, etc. This tool is designed using the inversion of control concept (thanks to @yanang007) and supports the extension of additional magnetic interference components.
Getting started
deinterf
can be installed using pip, tested on python 3.9:
pip install deinterf
Use Cases
Classical T-L compensation:
import matplotlib.pyplot as plt
from sgl2020 import Sgl2020
from deinterf.compensator.tmi.linear import Terms, TollesLawson
from deinterf.foundation.sensors import MagVector, Tmi
from deinterf.metrics.fom import improve_rate, noise_level
from deinterf.utils.data_ioc import DataIoC
if __name__ == "__main__":
surv_d = (
Sgl2020()
.line(["1002.02"])
.source(
[
"flux_b_x",
"flux_b_y",
"flux_b_z",
"mag_3_uc",
]
)
.take()
)
flt_d = surv_d["1002.02"]
# prepare data
tmi_with_interf = Tmi(tmi=flt_d["mag_3_uc"])
fom_data = DataIoC().add(
MagVector(bx=flt_d["flux_b_x"], by=flt_d["flux_b_y"], bz=flt_d["flux_b_z"])
)
# create compensator
compensator = TollesLawson(terms=Terms.Terms_16)
compensator.fit(fom_data, tmi_with_interf)
# compensate new data
# input the `DataIoC` corresponding to the new flight path and the signal to be compensated.
tmi_clean = compensator.transform(fom_data, tmi_with_interf)
# if it is FOM data, it can be fitted and compensated in one step
tmi_clean = compensator.fit_transform(fom_data, tmi_with_interf)
# predict magnetic interference only
interf = compensator.predict(fom_data)
# evaluating compensation performance
comped_noise_level = noise_level(tmi_clean)
print(f"{comped_noise_level=}")
ir = improve_rate(tmi_with_interf, tmi_clean)
print(f"{ir=}")
# simple plot signals
plt.plot(tmi_with_interf, label="tmi_with_interf")
plt.plot(tmi_clean, label="tmi_clean")
plt.legend()
plt.show()
Using "direction cosines calculated by the inertial navigation system (INS) instead of the magnetic vector" as an example, this section demonstrates how to extend or modify the classic T-L model:
from datetime import datetime, timedelta
from typing import NamedTuple
import matplotlib.pyplot as plt
import numpy as np
import ppigrf
from numpy.typing import ArrayLike
from scipy.spatial.transform import Rotation as R
from sgl2020 import Sgl2020
from deinterf.compensator.tmi.linear import Terms, TollesLawson
from deinterf.foundation.sensors import DirectionalCosine, MagVector, Tmi
from deinterf.metrics.fom import improve_rate
from deinterf.utils.data_ioc import DataIoC, DataNDArray, UniqueData
from deinterf.utils.transform import magvec2dircosine
class LocationWGS84(DataNDArray, UniqueData):
"""Explicitly specified as unique data, which means that dependencies with different numbers share the same data source at build time
"""
def __new__(cls, lon: ArrayLike, lat: ArrayLike, alt: ArrayLike):
return super().__new__(cls, lon, lat, alt)
class Date(NamedTuple):
"""Non-indexable type, default is `UniqueData`
"""
year: int # year
doy: int # day of year
class IGRF(DataNDArray):
@classmethod
def __build__(cls, container: DataIoC):
lon, lat, alt = container[LocationWGS84].T
# doy to datetime
year, doy = container[Date]
date = datetime(year, 1, 1) + timedelta(days=doy - 1)
geo_e, geo_n, geo_u = ppigrf.igrf(lon, lat, alt / 1000, date)
geo = np.row_stack((geo_e, geo_n, geo_u)).T
return cls(*geo.T)
class InertialAttitude(DataNDArray):
def __new__(cls, yaw: ArrayLike, pitch: ArrayLike, roll: ArrayLike):
return super().__new__(cls, yaw, pitch, roll)
class InsDirectionalCosine(DirectionalCosine):
@classmethod
def __build__(cls, container: DataIoC) -> DirectionalCosine:
att_angle = container[InertialAttitude] # (yaw, pitch, roll): DEN
# DEN to ENU
att_angle = att_angle[:, [1, 2, 0]]
att_angle[:, 2] = -att_angle[:, 2]
r = R.from_euler("xyz", att_angle, degrees=True)
geo_bodyframe = r.apply(container[IGRF], inverse=True)
dcos = magvec2dircosine(geo_bodyframe)
return cls(*dcos.T)
if __name__ == "__main__":
surv_d = (
Sgl2020()
.line(["1002.02"])
.source(
[
"flux_d_x",
"flux_d_y",
"flux_d_z",
"mag_3_uc",
"ins_yaw",
"ins_pitch",
"ins_roll",
"lon",
"lat",
"utm_z",
]
)
.take()
)
flt_d = surv_d["1002.02"]
# date of flt1002
year, doy = 2020, 172
# classic compensation
tmi_with_interf = Tmi(tmi=flt_d["mag_3_uc"])
fom_data = DataIoC().with_data(
MagVector[1](bx=flt_d["flux_d_x"], by=flt_d["flux_d_y"], bz=flt_d["flux_d_z"]),
)
compensator = TollesLawson(terms=Terms.Terms_16[1])
tmi_clean_classic = compensator.fit_transform(fom_data, tmi_with_interf)
# INS extended compensation
fom_data = DataIoC().with_data(
Date(year=year, doy=doy),
LocationWGS84(lon=flt_d["lon"], lat=flt_d["lat"], alt=flt_d["utm_z"]),
InertialAttitude[1](yaw=flt_d["ins_yaw"], pitch=flt_d["ins_pitch"], roll=flt_d["ins_roll"]),
MagVector[1](bx=flt_d["flux_d_x"], by=flt_d["flux_d_y"], bz=flt_d["flux_d_z"]),
)
# modify the data source that Direction Cosines depends on
fom_data.add_provider(DirectionalCosine, InsDirectionalCosine)
tmi_clean_ins = compensator.fit_transform(fom_data, tmi_with_interf)
# comparing the two models
ir_classic = improve_rate(tmi_with_interf, tmi_clean_classic, verbose=True)
print(f"{ir_classic=}")
ir_ins = improve_rate(tmi_with_interf, tmi_clean_ins, verbose=True)
print(f"{ir_ins=}")
plt.plot(tmi_with_interf, label="tmi_with_interf")
plt.plot(tmi_clean_classic, label="tmi_clean_classic")
plt.plot(tmi_clean_ins, label="tmi_clean_ins")
plt.legend()
plt.show()
Licensing
The code in this project is licensed under MIT license.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.