Minimal implementation of Deep Joint Demosaicking and Denoising [Gharbi2016]
Project description
# Deep Joint Demosaicking and Denoising SiGGRAPH Asia 2016
Michaël Gharbi gharbi@mit.edu Gaurav Chaurasia Sylvain Paris Frédo Durand
A minimal pytorch implementation of “Deep Joint Demosaicking and Denoising” [Gharbi2016]
# Installation
From this repo:
`shell python setup.py install `
Using pip:
`shell pip install demosaicnet `
Then run the demo script with:
`shell demosaicnet_demo `
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
demosaicnet-0.0.1.tar.gz
(3.6 MB
view hashes)
Built Distribution
Close
Hashes for demosaicnet-0.0.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9a2e22058594da773c442d8077884ee11e9a2a636ae1ab75b3b87261ba3ceb1d |
|
MD5 | ec5ae45ac8211ce8025a4de97351c57d |
|
BLAKE2b-256 | 45780d9091cf9839c7be2a136c3dbe378dfb2c80db67c305f91318e83d3e2f9b |