Skip to main content

Describr is a Python library that provides a convenient way to generate descriptive statistics for datasets.

Project description

README.md

describr is a Python library that provides functionality for descriptive statistics and outlier detection in pandas DataFrames.

Installation

You can install describr using pip:

pip install describr

Example usage

import pandas as pd
import numpy as np
from describr import FindOutliers, DescriptiveStats

Create a sample dataframe

np.random.seed(0)
n = 500

data = {
    'MCID': ['MCID_' + str(i) for i in range(1, n + 1)],
    'Age': np.random.randint(18, 90, size=n),
    'Race': np.random.choice(['White', 'Black', 'Asian', 'Hispanic',''], size=n),
    'Educational_Status': np.random.choice(['High School', 'Bachelor', 'Master', 'PhD',''], size=n),
    'Gender': np.random.choice(['Male', 'Female', ''], size=n),
    'ER_COST': np.random.uniform(500, 5000, size=n),
    'ER_VISITS': np.random.randint(0, 10, size=n),
    'IP_COST': np.random.uniform(5000, 20000, size=n),
    'IP_ADMITS': np.random.randint(0, 5, size=n),
    'CHF': np.random.choice([0, 1], size=n),
    'COPD': np.random.choice([0, 1], size=n),
    'DM': np.random.choice([0, 1], size=n),
    'ASTHMA': np.random.choice([0, 1], size=n),
    'HYPERTENSION': np.random.choice([0, 1], size=n),
    'SCHIZOPHRENIA': np.random.choice([0, 1], size=n),
    'MOOD_DEPRESSED': np.random.choice([0, 1], size=n),
    'MOOD_BIPOLAR': np.random.choice([0, 1], size=n),
    'TREATMENT': np.random.choice(['Yes', 'No'], size=n)
}

df = pd.DataFrame(data)

Parameters

df: name of dataframe

id_col: Primary key of the dataframe; accepts string or integer or float.

group_col: A Column to group by, It must be a binary column. Strings or integers are acceptable.

positive_class: This is the response value for the primary outcome of interest. For instance, positive value for a Treatment cohort is 'Yes' or 1 otherwise 'No' or 0, respectively. Strings or integers are acceptable.

continuous_var_summary: Users specifies measures of central tendency, only mean and median are acceptable. This parameter is case insensitive.

Example usage of FindOutliers Class

This returns a dataframe (outliers_flag_df) with outlier_flag column (outlier_flag =1: record contains one or more ouliers). Tukey's IQR method is used to detect outliers in the data

outliers_flag=FindOutliers(df=df, id_col='MCID', group_col='TREATMENT')
outliers_flag_df=outliers_flag.flag_outliers()

This example counts number of rows with outliers stratified by a defined grouping variable

outliers_flag.count_outliers()

This example removes all outliers

df2=outliers_flag.remove_outliers()
df2.shape

Example usage of DescriptiveStats Class

descriptive_stats = DescriptiveStats(df=df, id_col='MCID', group_col='TREATMENT', positive_class='Yes', continuous_var_summary='median')

Gets statistics for binary and categorical variables and returns a dataframe.

binary_stats_df = descriptive_stats.get_binary_stats()

Gets mean and standard deviation for continuous variables and returns a dataframe.

continuous_stats_mean_df = descriptive_stats.get_continuous_mean_stats()

Gets median and interquartile range for continuous variables and returns a dataframe.

continuous_stats_median_df = descriptive_stats.get_continuous_median_stats()

Computes summary statistics for binary and continuous variables based on defined measure of central tendency. Method returns a dataframe.

descriptive_stats.compute_descriptive_stats()
summary_stats = descriptive_stats.summary_stats()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

describr-0.0.13.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

describr-0.0.13-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file describr-0.0.13.tar.gz.

File metadata

  • Download URL: describr-0.0.13.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for describr-0.0.13.tar.gz
Algorithm Hash digest
SHA256 fb36f9083e46b0d53960c7af09239b2fe507c8ce052caf30d13e36eafff486e1
MD5 034c7fc2eaa5d421c64a001e2f267b97
BLAKE2b-256 040a592d0bd32f4fd5bb9d1dcbe05a040105684554c6bbca9cf2d1dca9bcaabe

See more details on using hashes here.

File details

Details for the file describr-0.0.13-py3-none-any.whl.

File metadata

  • Download URL: describr-0.0.13-py3-none-any.whl
  • Upload date:
  • Size: 7.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for describr-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 1b181c826a363cdcd6bbe2a8afe1c038302fd07a598158b7502dfef7bf0fc2da
MD5 345b1748b3b292595aff201391aadcd9
BLAKE2b-256 1dc8a005bb60d9d01513204a93506114d94b4eb92dd7700615b87b48863a042c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page