A Jupyter notebook extension for dataframe cleansing
Project description
<div><table align=”center”><tr><td><img src=”https://rickkrasinski.github.io/dfcleanser/graphics/pandas.png” style=”width: 120px ; height: 120px”></td><td style=”margin-left: 200px”><p style=”text-align: left” id=”mainTitle”><font size=”6”>Pandas Dataframe Cleanser</font></p><p id=”titleComment”><font size=”3”>A utility to prepare your pandas dataframe for data analytics.</font></p></td><td><img src=”https://rickkrasinski.github.io/dfcleanser/graphics/dataCleansing.png” style=”width: 120px ; height: 120px”></td></tr></table></div>
# dfcleanser Pandas Dataframe Cleanser is a Jupyter Notebook extension that lets you perform operations on a pandas dataframe.
## Chapters Dataframe Cleanser has the following Chapters supporting specific functionality. 1) Data Import 2) Data Inspection 3) Data Cleansing 4) Data Transform 5) Data Export 6) Data Utilities
## Users Manual Refer to the dataframe cleanser <a href=”https://rickkrasinski.github.io/dfcleanser-help/index.html” target=”_blank”>Users Manual</a> to get detailed info on all aspects of the package.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file dfcleanser-1.0.0.tar.gz
.
File metadata
- Download URL: dfcleanser-1.0.0.tar.gz
- Upload date:
- Size: 104.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4730a59f652b9f835a00de3e30500b412d19e8d361ce23ce5988c3230cc165d2 |
|
MD5 | 1ea318b61a99d01e85a873593e2777ba |
|
BLAKE2b-256 | a14ecf3bc3a58d01fa22a2e1ce981dfc3e0361778d61c38140ee1d28e74b35af |
File details
Details for the file dfcleanser-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: dfcleanser-1.0.0-py3-none-any.whl
- Upload date:
- Size: 55.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 41d739c1fa0ecb9d99defb2e6b0e02f22b147eba9bb2df4e00c54a8ce697679a |
|
MD5 | 70f8baee88bebf447a132c22d99ed7a2 |
|
BLAKE2b-256 | 6a3c53b327004e231eea5962f02bdbac63b41707989f4ba062fb9bc5746f026a |