Skip to main content

Basic Linear Algebra in C++ (TU Vienna - ASC)

Project description

DHLLinAlg Logo

Build Status Documentation Status


DHL-LinAlg is a simple linear algebra implementation using modern C++.

This library is part of a scientific programing course at TU Vienna. Here are notes on the development process.

Installation

pip install dhllinalg

Building from sorce:

Requirements

pybind11, cmake, scikit-build

git clone --recurse-submodules https://github.com/DHL-ASC/DHL-LinAlg.git 
cd DHL-LinAlg  
pip install .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dhllinalg-0.1.1.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

dhllinalg-0.1.1-cp312-cp312-win_amd64.whl (120.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

dhllinalg-0.1.1-cp312-cp312-macosx_12_0_x86_64.whl (117.6 kB view details)

Uploaded CPython 3.12 macOS 12.0+ x86-64

dhllinalg-0.1.1-cp311-cp311-win_amd64.whl (121.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

dhllinalg-0.1.1-cp311-cp311-macosx_12_0_x86_64.whl (117.1 kB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

dhllinalg-0.1.1-cp310-cp310-win_amd64.whl (120.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

dhllinalg-0.1.1-cp310-cp310-macosx_12_0_x86_64.whl (115.8 kB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

dhllinalg-0.1.1-cp39-cp39-win_amd64.whl (118.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

dhllinalg-0.1.1-cp39-cp39-macosx_12_0_x86_64.whl (115.9 kB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

dhllinalg-0.1.1-cp38-cp38-win_amd64.whl (119.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

dhllinalg-0.1.1-cp38-cp38-macosx_12_0_x86_64.whl (115.8 kB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

File details

Details for the file dhllinalg-0.1.1.tar.gz.

File metadata

  • Download URL: dhllinalg-0.1.1.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for dhllinalg-0.1.1.tar.gz
Algorithm Hash digest
SHA256 9f68c919d49fe7102dfa2dd10564e5558c34afa87c42923bb066d82f661fa830
MD5 ea81120022f61017b76fa8aa17689199
BLAKE2b-256 7d26bbb02d0d99ffc9b7f89638913f6dd314c3646aa1873c3a4f007d27efe231

See more details on using hashes here.

File details

Details for the file dhllinalg-0.1.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for dhllinalg-0.1.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 386f3da8af20176f90aea5f5e5d7298827c2e9ed256bd2f4540e42dab7de4094
MD5 5341904613eecade0473d7cb1230ce32
BLAKE2b-256 9f46d0e64cc52e682092dc07f77f790c3bff37c32332949da42dd91c503b5e2d

See more details on using hashes here.

File details

Details for the file dhllinalg-0.1.1-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dhllinalg-0.1.1-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 eac83c1d99c7f57e007dd79f2ebc4a33dd6890883dbc44db4cdf7581ad432c13
MD5 b0f8f242c5c6fc17fe9d6b051405afe0
BLAKE2b-256 3f0c68f72a342dea34c318091d2475cbcbcc4c9215ddd9ee3c7c563101513f46

See more details on using hashes here.

File details

Details for the file dhllinalg-0.1.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for dhllinalg-0.1.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1274301cbebfadedd0f7390fc009691bbb798a0074ec784cd8bb98681b074205
MD5 14b9c2a6bff60be4c5dd84f2a1301054
BLAKE2b-256 52e9210acecee9d3677c6588f3bb5eac47d881ebd19a3dcb4453f160555c0c0a

See more details on using hashes here.

File details

Details for the file dhllinalg-0.1.1-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dhllinalg-0.1.1-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 eaab7e99fcadaa1f6e1f1d693e8d46200b7a21f773b40d4322e3382838650e8e
MD5 98ba197aa1269e870395c206bac671c6
BLAKE2b-256 8c8ecde05c0c38bab4cc97f2623937cddfdabe3e3987b05063b12b4375ffcfd0

See more details on using hashes here.

File details

Details for the file dhllinalg-0.1.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for dhllinalg-0.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 152172f29e9cf524b79f545494174ea7b278e2b3a00515b8526e12a4b0a27951
MD5 6239daee259fbfa2a64f21db6cc968c1
BLAKE2b-256 b31f4af9ab0aecdb620d9f30faf52ff9981152fc8c4130d7698cd89f3258e8f5

See more details on using hashes here.

File details

Details for the file dhllinalg-0.1.1-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dhllinalg-0.1.1-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 be9f5bc6710682f94b6d1e234766dfea76506d6c0247e96521136c08b83a70e2
MD5 c77a827cbe91c72691dc6f3bc0b11d77
BLAKE2b-256 c2fe08ca662c0275bafe69918cc2af4a3aab9cb8ade5d9018ba00caf1a80edd2

See more details on using hashes here.

File details

Details for the file dhllinalg-0.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: dhllinalg-0.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 118.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for dhllinalg-0.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f25de3f698e9fa9bf09e94bbfdbfef4805136e3b2c0a93dd18ec322b240e2309
MD5 50f8e93e85eda0eaec202e2ccbe6f3b0
BLAKE2b-256 07851a3a4d745da06d3abdd6a430ea97808c53581c60532e18125ec62394620e

See more details on using hashes here.

File details

Details for the file dhllinalg-0.1.1-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dhllinalg-0.1.1-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 8d58bd2faf240937c29c3d826eed9ffc2b26e226ad4708e554d3442680b00a56
MD5 1d9594d635717768aae19b68c842f187
BLAKE2b-256 7eb91ea4dc03a261a27cd6d15544318b08c7963ade09c8d96fad1060ac7b4255

See more details on using hashes here.

File details

Details for the file dhllinalg-0.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: dhllinalg-0.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 119.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for dhllinalg-0.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 565e767802e0f3886cfe4fdce7c18f8031c3826bde4835525aaa9cd0c6cc5dcb
MD5 9e8cdc236599596ac6282b7423ba2535
BLAKE2b-256 0d5c2a7584971dd46761b7c1c7f97e25fdbbc8487fce4dd225666beba7fcc4b2

See more details on using hashes here.

File details

Details for the file dhllinalg-0.1.1-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dhllinalg-0.1.1-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 f0e9b22c24b5e1fd729511f442ad09c166254872b2917b2dafb701738bd6299c
MD5 560b2cca8810cdafdd07c0631ec79b6f
BLAKE2b-256 3f79b2d9675a8608aafc10a81ada7e9dc7fc6701588ddf45725017299222c5c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page