Skip to main content

markdown and image serve base on cloud storage

Project description

diligent: a transformer between database and Parquet file

Introduction:

diligent is a python tool library based on Python pyarrow which supports multithread and asynchronous calls. It can help users transform data between database and Parquet files.

Features:

  • Multithread: support batch reading/writeing and multithread functions an database table and Parquet files.
  • Read directory: reading all Parquet files in the giving directory and transform into database. One directory maps to one database table.
  • Mock data: create Parquet files or database tables in a customized schema.
  • Workflow: giving a yaml file including your customized configurations, diligent can create a workflow to execute multiple jobs.

Limits:

  • Only support Postgresql DB and Oracle DB by now.

Installation

source code

git clone https://gitee.com/lipicoder/diligent.git
cd diligent
pip install -e .

Pypi

$ python -m build

pip

$ pip install diligent

Usage

Input 'diligent' in command line. The usage lint will be displayed.

(.context) % diligent
Usage: diligent [OPTIONS] COMMAND [ARGS]...

  diligent command line interface.

Options:
  -h, --help  Show this message and exit.

Commands:
  mock      Mock data to directory , file, or database.
  parquet   Write or read Parquet file or directory
  workflow  Database and parquet data transform workflow.

mock

Example:

# mock data workflow

# workflow lists
mocks:
  - name: "mock-to-directory"
    row-number: 2048
    direction: "directory" # directory ,file or  table
    directory: "./datasets/mock_data/mock_stocks"
    columns: {
      # stock code as a type
      "sec_code": "code",  # "600001"
      "date": "date",  # 2022-08-24
      "close": "float",  # 16.87
      "open": "float",  # 16.65
      "high": "float",  # 16.95
      "low": "float",  # 16.55
      "hold": "decimal(10,5)",  # 123.25515
      "time": "timestample(unit=s,tz=Asia/Shanghai)",
      "volume": "int",  # 1530231
      "amount": "int",  # 2571196416
      "memo": "string", # hello
    }

  - name: "mock-to-file"
    row-number: 2048
    direction: "file" # directory, file or table
    filepath: "./datasets/mock_data/mock_stocks.parquet"
    columns: {
      # stock code as a type
      "sec_code": "code",  # "600001"
      "date": "date",  # 2022-08-24
      "close": "float",  # 16.87
      "open": "float",  # 16.65
      "high": "float",  # 16.95
      "low": "float",  # 16.55
      "hold": "decimal(10,5)",  # 123.25515
      "time": "timestample(unit=s,tz=Asia/Shanghai)",
      "volume": "int",  # 1530231
      "amount": "int",  # 2571196416
      "memo": "string", # hello
    }

  - name: "mock-to-table"
    row-number: 204800
    direction: "table" # directory ,file or table
    engine: "postgresql"
    dsn: "postgresql://test:test123@localhost:5432/diligent"
    table-name: "mock_stocks"
    columns: {
      # stock code as a type
      "sec_code": "code",  # "600001"
      "date": "date",  # 2022-08-24
      "close": "float",  # 16.87
      "open": "float",  # 16.65
      "high": "float",  # 16.95
      "low": "float",  # 16.55
      "hold": "decimal(10,5)",  # 123.25515
      # datetime.datetime(2022,10,25).timestamp()
      "time": "timestample(unit=s,tz=Asia/Shanghai)",
      "volume": "int",  # 1530231
      "amount": "int",  # 2571196416
    }

direction transform to which format. 'directory': a directory path. 'file': a file path. 'table': a database table name.

columns defination of the database table. Support standard data types of Postgresql or Oracle db, based on which database you choose. diligent will auto map the database data type to pyarrow row data type. 'code' means stock code, which would be removed later.

execute mock workflow:

(.context) % diligent mock tests/yaml/mock_file.yaml
write directory finished
write parquet finished

parquet

Read data in database table and write data into a Parquet file or Parquet files in a directory. Or read data in a Parquet file or Parquet files in a directory and write data into a database table.

(.context) % diligent parquet
Usage: diligent parquet [OPTIONS] COMMAND [ARGS]...

  Write or read Parquet file or directory.

Options:
  -h, --help  Show this message and exit.

Commands:
  read   Read parquet file and write to database.
  write  Read from database and write to parquet file.

parquet read

Read data in a Parquet file or Parquet files in a directory and write data into a database table.

(.context) % diligent parquet read -h
Usage: diligent parquet read [OPTIONS] [-e ENGINE] PATH DSN TABLE_NAME

  Read parquet file, write to database.

  dsn sample:postgresql://user:password@host:port/dbname.

  engine [postgresql/oracle]

Options:
  -h, --help  Show this message and exit.

Example:

diligent parquet read datasets/mock_data/mock_stocks.parquet postgresql://test:test123@localhost:5432/diligent mock_stocks -e postgresql

parquet write:

Read data in database table and write data into a Parquet file or Parquet files in a directory.

directory.

(.context) % diligent parquet write -h
Usage: diligent parquet write [OPTIONS]  [-e ENGINE] PATH DSN TABLE_NAME

  Read from database and write to parquet file.

  dsn sample:postgresql://user:password@host:port/dbname.

  engine [postgresql/oracle]

Options:
  -s, --batch_size INTEGER
  -h, --help                Show this message and exit.

Example:

diligent parquet write datasets/mock_data/mock_stocks_tmp postgresql://test:test123@localhost:5432/diligent mock_stocks -e postgresql

parquet write supports configuration of batch size

diligent parquet write -s 1024 -e postgresql datasets/mock_data/mock_stocks postgresql://test:test123@localhost:5432/diligent mock_stocks

In this case, the max row number of a single parquet file is 1024, we can see four files in the directory.

(.context) % ls datasets/mock_data/mock_stocks
ea6c445914824cae8ef171bbafd3a58f.parquet
604a63ccf14343c39bcc5bc0d1b3907d.parquet
9c7150d9821c46c78054d87ae23d900f.parquet
2ba1952316344b01a2a2f8e6faf41c31.parquet

file

diligent parquet write -e postgresql datasets/mock_data/mock_stocks_tmp.parquet postgresql://test:test123@localhost:5432/diligent mock_stocks;

Consider of reducing the memory usage and speed up the writing efficiency. write file can also support configuration of batch size.

workflow

create and exectue a workflow using a yaml configuration file.

(.context) % diligent workflow  -h
Usage: diligent workflow [OPTIONS] YAML_FILE

  Execute yaml workflow.

Options:
  -h, --help  Show this message and exit.

Example:

workflows:
  - name: "read-workflow" # workflow name
    direction: "table" # table or file or directory
    table-name: "mock_stocks" # table name
    engine: "postgresql"
    dsn: "postgresql://test:test123@localhost:5432/diligent"
    read-type: "file" # file or directory
    filepath: "./datasets/mock_data/mock_stocks.parquet" # filepath

  - name: "write-directory-workflow" # workflow name
    direction: "directory"
    table-name: "mock_stocks" # table name
    engine: "postgresql"
    dsn: "postgresql://test:test123@localhost:5432/diligent"
    directory: "./datasets/mock_data/mock_stocks" # directory path
    batch-size: 1024 # batch size

  - name: "write-file-workflow" # workflow name
    direction: "file"
    table-name: "mock_stocks" # table name
    engine: "postgresql"
    dsn: "postgresql://test:test123@localhost:5432/diligent"
    filepath: "./datasets/mock_data/mock_stocks_rewrite.parquet"

TODO

  • remove 'code' type from diligent mock. add new supported types such as random string and random digit string.

Dependency

pyarrow >=9.0.0

python >= 3.10

License

Apache License 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

diligent-0.0.5.tar.gz (32.3 kB view details)

Uploaded Source

Built Distribution

diligent-0.0.5-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file diligent-0.0.5.tar.gz.

File metadata

  • Download URL: diligent-0.0.5.tar.gz
  • Upload date:
  • Size: 32.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for diligent-0.0.5.tar.gz
Algorithm Hash digest
SHA256 8d652c0d622c750a0760dbce6334cf6d1359280e1b619128f352344c868ba075
MD5 a5aa488c7f46039c36133a756c75f465
BLAKE2b-256 6925b5b02a82ce2a0dabbae346ead241503570d8f394866079478b206e35d27c

See more details on using hashes here.

File details

Details for the file diligent-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: diligent-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 13.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for diligent-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 f46e225866e2e1b28fea4b0d08a33eae08f453d15504d03d2db587bda344f9f6
MD5 ef7ff64c28f04adee723900ee9def261
BLAKE2b-256 4d0728e0585a2f145e6f71d4aceb089e351106dbf34b282cb209a15da7bc1963

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page