Skip to main content

Django clickHouse database backend

Project description

Django ClickHouse Database Backend

PyPI - Version PyPI - Python Version PyPI django version PyPI - Downloads GitHub licence GitHub Action: Test Coverage Status Code style: black

Django clickhouse backend is a django database backend for clickhouse database. This project allows using django ORM to interact with clickhouse, the goal of the project is to operate clickhouse like operating mysql, postgresql in django.

Thanks to clickhouse driver, django clickhouse backend use it as DBAPI. Thanks to clickhouse pool, it makes clickhouse connection pool.

Read Documentation for more.

Features:

  • Reuse most of the existed django ORM facilities, minimize your learning costs.
  • Connect to clickhouse efficiently via clickhouse native interface and connection pool.
  • No other intermediate storage, no need to synchronize data, just interact directly with clickhouse.
  • Support clickhouse specific schema features such as Engine and Index.
  • Support most types of table migrations.
  • Support creating test database and table, working with django TestCase and pytest-django.
  • Support most clickhouse data types.
  • Support SETTINGS in SELECT Query.

Notes:

  • Not tested upon all versions of clickhouse-server, clickhouse-server 22.x.y.z or over is suggested.
  • Aggregation functions result in 0 or nan (Not NULL) when data set is empty. max/min/sum/count is 0, avg/STDDEV_POP/VAR_POP is nan.
  • In outer join, clickhouse will set missing columns to empty values (0 for number, empty string for text, unix epoch for date/datatime) instead of NULL. So Count("book") resolve to 1 in a missing LEFT OUTER JOIN match, not 0. In aggregation expression Avg("book__rating", default=2.5), default=2.5 have no effect in a missing match.
  • Clickhouse does not support unique constraint and foreignkey constraint. ForeignKey, ManyToManyField and OneToOneField can be used with clickhouse backend, but no database level constraints will be added, so there could be some consistency problems.
  • Clickhouse does not support transaction. If any exception occurs during migrating, then your clickhouse database will be in an untracked state. Any migration should be full tested in test environment before deployed to production environment.
  • This project does not support migrations of changing table engine and settings yet.

Requirements:

Get started

Installation

$ pip install django-clickhouse-backend

or

$ git clone https://github.com/jayvynl/django-clickhouse-backend
$ cd django-clickhouse-backend
$ python setup.py install

Configuration

Only ENGINE is required in database setting, other options have default values.

  • ENGINE: required, set to clickhouse_backend.backend.
  • NAME: database name, default default.
  • HOST: database host, default localhost.
  • PORT: database port, default 9000.
  • USER: database user, default default.
  • PASSWORD: database password, default empty.

In the most cases, you may just use clickhouse to store some big events tables, and use some RDBMS to store other tables. Here I give an example setting for clickhouse and postgresql.

INSTALLED_APPS = [
    # ...
    "clickhouse_backend",
    # ...
]
DATABASES = {
    "default": {
        "ENGINE": "django.db.backends.postgresql",
        "HOST": "localhost",
        "USER": "postgres",
        "PASSWORD": "123456",
        "NAME": "postgres",
    },
    "clickhouse": {
        "ENGINE": "clickhouse_backend.backend",
        "NAME": "default",
        "HOST": "localhost",
        "USER": "DB_USER",
        "PASSWORD": "DB_PASSWORD",
    }
}
DATABASE_ROUTERS = ["dbrouters.ClickHouseRouter"]
# dbrouters.py
from clickhouse_backend.models import ClickhouseModel


def get_subclasses(class_):
    classes = class_.__subclasses__()

    index = 0
    while index < len(classes):
        classes.extend(classes[index].__subclasses__())
        index += 1

    return list(set(classes))


class ClickHouseRouter:
    def __init__(self):
        self.route_model_names = set()
        for model in get_subclasses(ClickhouseModel):
            if model._meta.abstract:
                continue
            self.route_model_names.add(model._meta.label_lower)

    def db_for_read(self, model, **hints):
        if (model._meta.label_lower in self.route_model_names
                or hints.get("clickhouse")):
            return "clickhouse"
        return None

    def db_for_write(self, model, **hints):
        if (model._meta.label_lower in self.route_model_names
                or hints.get("clickhouse")):
            return "clickhouse"
        return None

    def allow_migrate(self, db, app_label, model_name=None, **hints):
        if (f"{app_label}.{model_name}" in self.route_model_names
                or hints.get("clickhouse")):
            return db == "clickhouse"
        elif db == "clickhouse":
            return False
        return None

You should use database router to automatically route your queries to the right database. In the preceding example, I write a database router which route all queries from subclasses of clickhouse_backend.models.ClickhouseModel or custom migrations with a clickhouse hint key to clickhouse. All other queries are routed to the default database (postgresql).

Model Definition

Clickhouse backend support django builtin fields and clickhouse specific fields.

Read fields documentation for more.

Notices about model definition:

  • import models from clickhouse_backend, not from django.db

  • add low_cardinality for StringFiled, when the data field cardinality is relatively low, this configuration can significantly improve query performance

  • cannot use db_index=True in Field, but we can add in the Meta indexes

  • need to specify the ordering in Meta just for default query ordering

  • need to specify the engine for clickhouse, specify the order_by for clickhouse order and the partition_by argument

from django.db.models import CheckConstraint, IntegerChoices, Q
from django.utils import timezone

from clickhouse_backend import models


class Event(models.ClickhouseModel):
    class Action(IntegerChoices):
        PASS = 1
        DROP = 2
        ALERT = 3
    ip = models.GenericIPAddressField(default="::")
    ipv4 = models.IPv4Field(default="127.0.0.1")
    ip_nullable = models.GenericIPAddressField(null=True)
    port = models.UInt16Field(default=0)
    protocol = models.StringField(default="", low_cardinality=True)
    content = models.JSONField(default=dict)
    timestamp = models.DateTime64Field(default=timezone.now)
    created_at = models.DateTime64Field(auto_now_add=True)
    action = models.EnumField(choices=Action.choices, default=Action.PASS)

    class Meta:
        ordering = ["-timestamp"]
        engine = models.MergeTree(
            primary_key="timestamp",
            order_by=("timestamp", "id"),
            partition_by=models.toYYYYMMDD("timestamp"),
            index_granularity=1024,
            index_granularity_bytes=1 << 20,
            enable_mixed_granularity_parts=1,
        )
        indexes = [
            models.Index(
                fields=["ip"],
                name="ip_set_idx",
                type=models.Set(1000),
                granularity=4
            ),
            models.Index(
                fields=["ipv4"],
                name="ipv4_bloom_idx",
                type=models.BloomFilter(0.001),
                granularity=1
            )
        ]
        constraints = (
            CheckConstraint(
                name="port_range",
                check=Q(port__gte=0, port__lte=65535),
            ),
        )

Migration

$ python manage.py makemigrations

this operation will generate migration file under apps/migrations/

then we mirgrate

$ python manage.py migrate --database clickhouse

for the first time run, this operation will generate django_migrations table with create table sql like this

> show create table django_migrations;

CREATE TABLE other.django_migrations
(
    `id` Int64,
    `app` FixedString(255),
    `name` FixedString(255),
    `applied` DateTime64(6, 'UTC')
)
ENGINE = MergeTree
ORDER BY id
SETTINGS index_granularity = 8192 

we can query it with results like this

> select * from django_migrations;

┌──────────────────id─┬─app─────┬─name─────────┬────────────────────applied─┐
 1626937818115211264  testapp  0001_initial  2023-02-18 13:32:57.538472 
└─────────────────────┴─────────┴──────────────┴────────────────────────────┘

migrate will create a table with name event as we define in the models

> show create table event;

CREATE TABLE other.event
(
    `id` Int64,
    `ip` IPv6,
    `ipv4` IPv6,
    `ip_nullable` Nullable(IPv6),
    `port` UInt16,
    `protocol` LowCardinality(String),
    `content` String,
    `timestamp` DateTime64(6, 'UTC'),
    `created_at` DateTime64(6, 'UTC'),
    `action` Enum8('Pass' = 1, 'Drop' = 2, 'Alert' = 3),
    INDEX ip_set_idx ip TYPE set(1000) GRANULARITY 4,
    INDEX port_bloom_idx port TYPE bloom_filter(0.001) GRANULARITY 1,
    CONSTRAINT port_range CHECK (port >= 0) AND (port <= 65535)
)
ENGINE = ReplacingMergeTree
PARTITION BY toYYYYMMDD(timestamp)
ORDER BY id
SETTINGS index_granularity = 8192

Operate Data

create

for i in range(10):
    Event.objects.create(ip_nullable=None, port=i,
                         protocol="HTTP", content="test",
                         action=Event.Action.PASS.value)
assert Event.objects.count() == 10

query

queryset = Event.objects.filter(content="test")
for i in queryset:
    print(i)

update

Event.objects.filter(port__in=[1, 2, 3]).update(protocol="TCP")
time.sleep(1)
assert Event.objects.filter(protocol="TCP").count() == 3

delete

Event.objects.filter(protocol="TCP").delete()
time.sleep(1)
assert not Event.objects.filter(protocol="TCP").exists()

Except for the model definition, all other operations are like operating relational databases such as mysql and postgresql

Testing

Writing testcase is all the same as normal django project. You can use django TestCase or pytest-django. Notice: clickhouse use mutations for deleting or updating. By default, data mutations is processed asynchronously. That is, when you update or delete a row, clickhouse will perform the action after a period of time. So you should change this default behavior in testing for deleting or updating. There are 2 ways to do that:

  • Config database engine as follows, this sets mutations_sync=1 at session scope.
    DATABASES = {
        "default": {
            "ENGINE": "clickhouse_backend.backend",
            "OPTIONS": {
                "settings": {
                    "mutations_sync": 1,
                }
            }
        }
    }
    
  • Use SETTINGS in SELECT Query.
    Event.objects.filter(protocol="UDP").settings(mutations_sync=1).delete()
    

Sample test case.

from django.test import TestCase


class TestEvent(TestCase):
    def test_spam(self):
        assert Event.objects.count() == 0

Distributed table

This backend support distributed DDL queries (ON CLUSTER clause) and distributed table engine.

The following example assumes that a cluster defined by docker compose in this repository is used. This cluster name is cluster, it has 2 shards, every shard has 2 replica.

Configuration

DATABASES = {
    "default": {
        "ENGINE": "clickhouse_backend.backend",
        "OPTIONS": {
            "migration_cluster": "cluster",
            "settings": {
                "mutations_sync": 2,
                "insert_distributed_sync": 1,
                "insert_quorum": 2,
                "alter_sync": 2,
            },
        },
        "TEST": {"cluster": "cluster"},
    },
    "s1r2": {
        "ENGINE": "clickhouse_backend.backend",
        "PORT": 9001,
        "OPTIONS": {
            "migration_cluster": "cluster",
            "settings": {
                "mutations_sync": 2,
                "insert_distributed_sync": 1,
                "insert_quorum": 2,
                "alter_sync": 2,
            },
        },
        "TEST": {"cluster": "cluster", "managed": False, "DEPENDENCIES": ["default"]},
    },
    "s2r1": {
        "ENGINE": "clickhouse_backend.backend",
        "PORT": 9002,
        "OPTIONS": {
            "migration_cluster": "cluster",
            "settings": {
                "mutations_sync": 2,
                "insert_distributed_sync": 1,
                "insert_quorum": 2,
                "alter_sync": 2,
            },
        },
        "TEST": {"cluster": "cluster", "managed": False, "DEPENDENCIES": ["default"]},
    },
    "s2r2": {
        "ENGINE": "clickhouse_backend.backend",
        "PORT": 9003,
        "OPTIONS": {
            "migration_cluster": "cluster",
            "settings": {
                "mutations_sync": 2,
                "insert_distributed_sync": 1,
                "insert_quorum": 2,
                "alter_sync": 2,
            },
        },
        "TEST": {"cluster": "cluster", "managed": False, "DEPENDENCIES": ["default"]},
    },
}

Extra settings explanation:

  • "migration_cluster": "cluster" Migration table will be created on this cluster if this setting is specified, otherwise only local migration table is created.

  • "mutations_sync": 2 This is suggested if you want to test data mutations on replicated table. Don't set this in production environment.

  • "insert_distributed_sync": 1 This is suggested if you want to test inserting data into distributed table. Don't set this in production environment.

  • "insert_quorum": 2 This is suggested if you want to test inserting data into replicated table. The value is set to replica number.

  • "alter_sync": 2 This is suggested if you want to test altering or truncating replicated table. Don't set this in production environment.

  • "TEST": {"cluster": "cluster", "managed": False, "DEPENDENCIES": ["default"]} Test database will be created on this cluster. If you have multiple database connections to the same cluster and want to run tests over all these connections, then only one connection should set "managed": True(the default value), other connections should set "managed": False. So that test database will not be created multiple times.

    If your managed database alias is s1r2 instead default, "DEPENDENCIES": ["s1r2"] should be set to ensure the creation order for test databases.

    Do not hardcode database name when you define replicated table or distributed table. Because test database name is different from deployed database name.

Model

cluster in Meta class will make models being created on cluster.

from clickhouse_backend import models


class Student(models.ClickhouseModel):
    name = models.StringField()
    address = models.StringField()
    score = models.Int8Field()

    class Meta:
        engine = models.ReplicatedMergeTree(
            "/clickhouse/tables/{uuid}/{shard}",
            # Or if you want to use database name or table name, you should also use macro instead of hardcoded name.
            # "/clickhouse/tables/{database}/{table}/{shard}",
            "{replica}",
            order_by="id"
        )
        cluster = "cluster"


class DistributedStudent(models.ClickhouseModel):
    name = models.StringField()
    score = models.Int8Field()

    class Meta:
        engine = models.Distributed(
            "cluster", models.currentDatabase(), Student._meta.db_table, models.Rand()
        )
        cluster = "cluster"

CRUD

Just like normal table, you can do whatever you like to distributed table.

students = DistributedStudent.objects.bulk_create([DistributedStudent(name=f"Student{i}", score=i * 10) for i in range(10)])
assert DistributedStudent.objects.count() == 10
DistributedStudent.objects.filter(id__in=[s.id for s in students[5:]]).update(name="lol")
DistributedStudent.objects.filter(id__in=[s.id for s in students[:5]]).delete()

Migrate

If migration_cluster is not specified in database configuration. You should always run migrating on one specific cluster node. Because other nodes do not know whether migrations have been applied by any other node.

If migration_cluster is specified. Then migration table(named django_migrations) will be created on the specified cluster. When applied, migration operations of model with cluster defined in Meta class will be executed on cluster, other migration operations will be executed locally. This means distributed table will be created on all nodes as long as any node has applied the migrations. Other local table will only be created on node which has applied the migrations.

If you want to use local table in all nodes, you should apply migrations multiple times on all nodes. But remember, these local tables store data separately, currently this backend do not provide means to query data from other nodes.

python manage.py migrate
python manage.py migrate --database s1r2
python manage.py migrate --database s2r1
python manage.py migrate --database s2r2

Update

When updated from django clickhouse backend 1.1.0 or lower, you should not add cluster related settings to your existing project. Because:

  • Migration table schema won't be changed if you add or remove migration_on_cluster. And python mange.py migrate will work abnormally.
  • If you add cluster to your existing model's Meta class, no schema changes will occur, this project does not support this yet.

If you really want to use cluster feature with existing project, you should manage schema changes yourself. These steps should be tested carefully in test environment. Clickhouse docs may be helpful.

  1. Apply all your existing migrations.
  2. Change your settings and model.
  3. Generate new migrations.
  4. Log into your clickhouse database and change table schemas to reflect your models.
  5. Apply migrations with fake flag.
python manage.py migrate
# Change your settings and model
python manage.py makemigrations
# Log into your clickhouse database and change table schemas to reflect your models.
python manage.py migrate --fake

Test

To run test for this project:

$ git clone https://github.com/jayvynl/django-clickhouse-backend
$ cd django-clickhouse-backend
# docker and docker-compose are required.
$ docker-compose up -d
$ python tests/runtests.py
# run test for every python version and django version
$ pip install tox
$ tox

Changelog

All changelogs.

Contributing

Read Contributing guide.

License

Django clickhouse backend is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

django-clickhouse-backend-1.1.7.tar.gz (66.1 kB view details)

Uploaded Source

Built Distribution

django_clickhouse_backend-1.1.7-py3-none-any.whl (78.9 kB view details)

Uploaded Python 3

File details

Details for the file django-clickhouse-backend-1.1.7.tar.gz.

File metadata

File hashes

Hashes for django-clickhouse-backend-1.1.7.tar.gz
Algorithm Hash digest
SHA256 6151862d1951b17c492a10d5cbf142a6ac59827129df5433abc3cddf4dd24545
MD5 6b1b2e5d64c29a48fa19cc03b46235e2
BLAKE2b-256 5f5fe0337ecbcc7a9b48afd0a75af3a3b00d2ee0001795af6b871d88c775d8d0

See more details on using hashes here.

Provenance

File details

Details for the file django_clickhouse_backend-1.1.7-py3-none-any.whl.

File metadata

File hashes

Hashes for django_clickhouse_backend-1.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 fc88db6dc6225de0785c26b4096186264e9e129ee296464c979adfec1d1ab05d
MD5 49bd7614b71b484553bfe6ff4399a1f3
BLAKE2b-256 8e70d4873a20632db10550be8475f2d5317336795c0895d07340db7f6806311c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page