A django library for mocking queryset functions in memory for testing
Project description
Django Mock Queries
A library for mocking Django queryset functions in memory for testing
Features
- QuerySet style support for method chaining
- Filtering with Q objects
- Aggregates generation
- CRUD functions
- Field lookups
- django-rest-framework serializer asserts
Examples
from django.db.models import Avg, Q
from django_mock_queries.query import MockSet, MockModel
qs = MockSet(
MockModel(mock_name='john', email='john@gmail.com'),
MockModel(mock_name='jeff', email='jeff@hotmail.com'),
MockModel(mock_name='bill', email='bill@gmail.com'),
)
print [x for x in qs.all().filter(email__icontains='gmail.com').select_related('address')]
# Outputs: [john, bill]
qs = MockSet(
MockModel(mock_name='model s', msrp=70000),
MockModel(mock_name='model x', msrp=80000),
MockModel(mock_name='model 3', msrp=35000),
)
print qs.all().aggregate(Avg('msrp'))
# Outputs: {'msrp__avg': 61666}
qs = MockSet(
MockModel(mock_name='model x', make='tesla', country='usa'),
MockModel(mock_name='s-class', make='mercedes', country='germany'),
MockModel(mock_name='s90', make='volvo', country='sweden'),
)
print [x for x in qs.all().filter(Q(make__iexact='tesla') | Q(country__iexact='germany'))]
# Outputs: [model x, s-class]
qs = MockSet(cls=MockModel)
print qs.create(mock_name='my_object', foo='1', bar='a')
# Outputs: my_object
print [x for x in qs]
# Outputs: [my_object]
Test function that uses Django QuerySet:
"""
Function that queries active users
"""
def active_users(self):
return User.objects.filter(is_active=True).all()
"""
Test function applies expected filters by patching Django's user model Manager or Queryset with a MockSet
"""
from mock import patch
from django_mock_queries.query import MockSet, MockModel
class TestApi(TestCase):
users = MockSet()
user_objects = patch('django.contrib.auth.models.User.objects', users)
@user_objects
def test_api_active_users_filters_by_is_active_true(self):
self.users.add(
MockModel(mock_name='active user', is_active=True),
MockModel(mock_name='inactive user', is_active=False)
)
for x in self.api.active_users():
assert x.is_active
Test django-rest-framework model serializer:
"""
Car model serializer that includes a nested serializer and a method field
"""
class CarSerializer(serializers.ModelSerializer):
make = ManufacturerSerializer()
speed = serializers.SerializerMethodField()
def get_speed(self, obj):
return obj.format_speed()
class Meta:
model = Car
fields = ('id', 'make', 'model', 'speed',)
"""
Test serializer returns fields with expected values and mock the result of nested serializer for field make
"""
def test_car_serializer_fields(self):
car = Car(id=1, make=Manufacturer(id=1, name='vw'), model='golf', speed=300)
values = {
'id': car.id,
'model': car.model,
'speed': car.formatted_speed(),
}
assert_serializer(CarSerializer) \
.instance(car) \
.returns('id', 'make', 'model', 'speed') \
.values(**values) \
.mocks('make') \
.run()
Full Example
There is a full Django application in the examples/users
folder. It shows how
to configure django_mock_queries
in your tests and run them with or without
setting up a Django database. Running the mock tests without a database can be
much faster when your Django application has a lot of database migrations.
To run your Django tests without a database, add a new settings file, and call
monkey_patch_test_db()
. Use a wildcard import to get all the regular settings
as well.
# settings_mocked.py
from django_mock_queries.mocks import monkey_patch_test_db
from users.settings import *
monkey_patch_test_db()
Then run your Django tests with the new settings file:
./manage.py test --settings=users.settings_mocked
Here's the pytest equivalent:
pytest --ds=users.settings_mocked
That will run your tests without setting up a test database. All of your tests that use Django mock queries should run fine, but what about the tests that really need a database?
ERROR: test_create (examples.users.analytics.tests.TestApi)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/.../examples/users/analytics/tests.py", line 28, in test_create
start_count = User.objects.count()
[...]
NotSupportedError: Mock database tried to execute SQL for User model.
If you want to run your tests without a database, you need to tell Django to skip the tests that need a database. You can do that by putting a skip decorator on the test classes or test methods that need a database.
@skipIfDBFeature('is_mocked')
class TestApi(TestCase):
def test_create(self):
start_count = User.objects.count()
User.objects.create(username='bob')
final_count = User.objects.count()
self.assertEqual(start_count + 1, final_count)
Installation
$ pip install django_mock_queries
Contributing
Anything missing or not functioning correctly? PRs are always welcome! Otherwise, you can create an issue so someone else does it when time allows.
You can follow these guidelines:
- Fork the repo from this page
- Clone your fork:
$ git clone https://github.com/{your-username}/django-mock-queries.git
$ cd django-mock-queries
$ git checkout -b feature/your_cool_feature
- Implement feature/fix
- Add/modify relevant tests
- Run tox to verify all tests and flake8 quality checks pass
$ tox
- Commit and push local branch to your origin
$ git commit . -m "New cool feature does this"
$ git push -u origin HEAD
- Create pull request
TODO
- Add docs as a service like readthedocs with examples for every feature
- Add support for missing QuerySet methods/Field lookups/Aggregation functions:
-
Methods that return new QuerySets: annotate, reverse, none, extra, raw
-
Methods that do not return QuerySets: bulk_create, in_bulk, as_manager
-
Field lookups: search
-
Aggregation functions: StdDev, Variance
-
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file django_mock_queries-2.1.6.tar.gz
.
File metadata
- Download URL: django_mock_queries-2.1.6.tar.gz
- Upload date:
- Size: 19.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60eac2b7e4edddd6db500e138588a2459cd511cde0c3db2e5c93c665b81988c7 |
|
MD5 | ba11931ddd1321924e65abdf2d9aed51 |
|
BLAKE2b-256 | 8b00b4727ea8a87d74802af96d04b206868689e9a5cca48b20132d8c1a732bac |