Diffusion Models Made Easy
Project description
Diffusion Models Made Easy
Diffusion Models Made Easy(dmme
) is a collection of easy to understand diffusion model implementations in Pytorch.
Documentation is available at https://diffusion-models-made-easy.readthedocs.io/en/latest/
Installation
Install from pip
pip install dmme
Install for customization or development
pip install -e ".[dev]"
Install dependencies for testing
pip install dmme[tests]
Install dependencies for editing documentation
pip install dmme[docs]
Train Diffusion Models
dmme
uses LightningCLI as a cli interface for training and evaluation.
You can find sample configuration file in the configs
directory
Using config files you can train DDPM by running
dmme.trainer fit --config configs/ddpm/cifar10.yaml
Or you can manually specify configurations for training
dmme.trainer fit --seed_everything 1337 \
--trainer.accelerator gpu --trainer.precision 16 --trainer.benchmark true \
--trainer.logger=pytorch_lightning.loggers.WandbLogger \
--trainer.logger.project="CIFAR10_Image_Generation" \
--trainer.logger.name="DDPM" \
--trainer.gradient_clip_val=1.0 \
--trainer.max_steps 800_000 \
--model LitDDPM --data CIFAR10
Supported Diffusion Models
- DDPM
- DDIM
- IDDPM
- (WIP) Classifier Guidance
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file dmme-0.5.2.tar.gz
.
File metadata
- Download URL: dmme-0.5.2.tar.gz
- Upload date:
- Size: 24.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 51a5308e2c8e96221fa1ac86c5cbe03b88327a7692d3bb107da15fe312e68376 |
|
MD5 | 0ac7ffdea8328f82d683dbfe24219aeb |
|
BLAKE2b-256 | bd1c8d855001920400c02d5f27809ac22465724416719b7ea4ecd48d74ea0630 |
File details
Details for the file dmme-0.5.2-py3-none-any.whl
.
File metadata
- Download URL: dmme-0.5.2-py3-none-any.whl
- Upload date:
- Size: 35.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3557c4c0980c2a2bdaf00a81a82a0b6205a826a75c3fe89de6249f737257dd33 |
|
MD5 | 4661c453cd73789dfca45f17b4d438b1 |
|
BLAKE2b-256 | 0b8e3e2b8f1ec2daf5a53f95fa9a2374e9faea42bfabf04f298644513fc73bd8 |