Skip to main content

Data filters

Reason this release was yanked:

Bug in Deduper CLI

Project description

Dolma's official logo. It's dolma written in yellow, round lowercase letters over a blue background.

Dolma is two things:

  1. Dolma Dataset: an open dataset of 3 trillion tokens from a diverse mix of web content, academic publications, code, books, and encyclopedic materials.
  2. Dolma Toolkit: a high-performance toolkit for curating datasets for language modeling.

Dolma Dataset

Dolma is an open dataset of 3 trillion tokens from a diverse mix of web content, academic publications, code, books, and encyclopedic materials. It was created as a training corpus for OLMo, a language model from the Allen Institute for AI (AI2).

Dolma is available for download on the HuggingFace 🤗 Hub: huggingface.co/datasets/allenai/dolma. To access Dolma, users must agree to the terms of the terms of AI2 ImpACT License for Medium Risk Artifacts.

You can also read more about Dolma in our announcement, as well as by consulting its data sheet.

Dolma Toolkit

Dolma is a toolkit to curate large datasets for (pre)-training ML models. Its key features are:

  1. High Performance ⚡: Can process billions of documents concurrently thanks to built-in parallelism.
  2. Portabilty 🧳: Works on a single machine, a cluster, or cloud environment.
  3. Built-In Taggers 🏷: Includes ready-to-use taggers commonly used to curate datasets such as Gopher, C4, and OpenWebText.
  4. Fast Deduplication 🗑: Speedy document deduplication using a Rust Bloom filter.
  5. Extensibility 🧩 & Cloud Support ☁: Supports custom taggers and AWS S3-compatible locations.

To install, simply type pip install dolma in your terminal.

To learn more about how to use the Dolma Toolkit, please visit the documentation.

Citation

If you use the Dolma dataset or toolkit, please cite the following items:

@techreport{DolmaDataset,
    author = {Soldaini, Luca and Kinney, Rodney and Bhagia, Akshita and Schwenk, Dustin and Atkinson, David and Authur, Russell and Chandu, Khyathi and Dumas, Jennifer and Lucy, Li and Lyu, Xinxi and Magnusson, Ian and Naik, Aakanksha and Nam , Crystal and  Peters, Matthew E.  and Ravichander, Abhilasha and Shen, Zejiang and Strubell, Emma and Subramani, Nishant and Tafjord, Oyvind and Walsh, Evan Pete and Hajishirzi, Hannaneh and Smith, Noah A. and Zettlemoyer, Luke and Beltagy, Iz and Groeneveld, Dirk and Dodge, Jesse and Lo, Kyle},
    title = {{Dolma: An Open Corpus of 3 Trillion Tokens for Language Model Pretraining Research}},
    institution = {{Allen Institute for AI}},
    year = {2023},
    note = {Released under ImpACT License as Medium Risk artifact, \url{https://github.com/allenai/dolma}}
}
@software{DolmaToolkit,
    author = {{Soldaini, Luca and Lo, Kyle and Kinney, Rodney and Naik, Aakanksha and Ravichander, Abhilasha and Bhagia, Akshita and Groeneveld, Dirk and Schwenk, Dustin and Magnusson, Ian and Chandu, Khyathi}},
    title = {{The Dolma Toolkit}},
    year = {2023},
    note = {{Apache 2.0 License, Version \texttt{0.9.0}, \url{https://github.com/allenai/dolma}}}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dolma-0.9.0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

dolma-0.9.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

dolma-0.9.0-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARMv7l

dolma-0.9.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

dolma-0.9.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

dolma-0.9.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

dolma-0.9.0-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARMv7l

dolma-0.9.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

dolma-0.9.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

dolma-0.9.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

dolma-0.9.0-pp38-pypy38_pp73-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARMv7l

dolma-0.9.0-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

dolma-0.9.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

dolma-0.9.0-cp312-cp312-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

dolma-0.9.0-cp312-cp312-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARMv7l

dolma-0.9.0-cp312-cp312-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

dolma-0.9.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

dolma-0.9.0-cp311-none-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

dolma-0.9.0-cp311-none-win32.whl (4.1 MB view details)

Uploaded CPython 3.11 Windows x86

dolma-0.9.0-cp311-cp311-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

dolma-0.9.0-cp311-cp311-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARMv7l

dolma-0.9.0-cp311-cp311-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

dolma-0.9.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

dolma-0.9.0-cp311-cp311-macosx_11_0_arm64.whl (5.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

dolma-0.9.0-cp311-cp311-macosx_10_7_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

dolma-0.9.0-cp310-none-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

dolma-0.9.0-cp310-none-win32.whl (4.1 MB view details)

Uploaded CPython 3.10 Windows x86

dolma-0.9.0-cp310-cp310-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

dolma-0.9.0-cp310-cp310-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARMv7l

dolma-0.9.0-cp310-cp310-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

dolma-0.9.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

dolma-0.9.0-cp310-cp310-macosx_11_0_arm64.whl (5.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

dolma-0.9.0-cp310-cp310-macosx_10_7_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

dolma-0.9.0-cp39-none-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

dolma-0.9.0-cp39-none-win32.whl (4.1 MB view details)

Uploaded CPython 3.9 Windows x86

dolma-0.9.0-cp39-cp39-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

dolma-0.9.0-cp39-cp39-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARMv7l

dolma-0.9.0-cp39-cp39-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

dolma-0.9.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

dolma-0.9.0-cp38-none-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

dolma-0.9.0-cp38-none-win32.whl (4.1 MB view details)

Uploaded CPython 3.8 Windows x86

dolma-0.9.0-cp38-cp38-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

dolma-0.9.0-cp38-cp38-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARMv7l

dolma-0.9.0-cp38-cp38-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

dolma-0.9.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

File details

Details for the file dolma-0.9.0.tar.gz.

File metadata

  • Download URL: dolma-0.9.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.0

File hashes

Hashes for dolma-0.9.0.tar.gz
Algorithm Hash digest
SHA256 dcc72dbd38a969496209317f47e83e862dbf687a532822c373d04ca7a6c5ee0a
MD5 f878ab183a10b9bcabd1b3be6d50ab8e
BLAKE2b-256 2f88d1f7e24d9dca5c3f2313d6d18564b65cc11f3532c178a79a7f470b307a66

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 559467a4a50bbcc1b45a5e8c74845b4c2d57cad090c16f8ddc1d8dbdf190cb5c
MD5 f9eb954575485642781d6fc0aa7a6dd3
BLAKE2b-256 1da089e29bde1261e0e17677a8ceaeeb45d30270947b0ff797dada4cb7754bf2

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 6181988e9eaf36a1ca5a85b7ab615fded98b745acc9285d2f0e877befcc91cd8
MD5 b3977789ccb66fda2b95cd31f463ae0a
BLAKE2b-256 d58bd59d9bbdf73b7967fd72e9eaa6b5e6cb143b71baff343cdc89b2fdfb6d15

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c5011e70e14c3278a7996a5e6a8e75e20929456ca8108606031cbf5468bdcfcb
MD5 c3ea9e6986c80d6cefe9c0bc44c96ca1
BLAKE2b-256 787a07ddfd978e93e724d12e0c24c1dc3e20bbe3d86d85093738bfc7356029db

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9434ffa44ff6b636b1623d347d3ff1fc42535fd295e9b0eac17b5dff0057328c
MD5 f599a44d865a7965fd427eee5c80e180
BLAKE2b-256 e18f096ed12cf2fbe948b1afcdcdbe77257f886a6dd497a68b829df408c0b387

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d9ff4dfed759b8d1e39d93306de16e424aff7181c70eba1f0158a37ee748edfa
MD5 852ea48305ddef708a709351b1f4fe79
BLAKE2b-256 7584ae50235e916e52c34bd4b8b568bddb27760f6c1d259d49cb8aa7814474a5

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 8ccc1a6211e8ec8d9703c02e3e866feaad28a7d180a2c0d526b7a5be45fc139d
MD5 57bada6be6b8a6e2650be7106cbe1d8b
BLAKE2b-256 0732f3477219d2409ed1a45b0a0e1d4d55062f8333ab01ef9f1e94d8a3e09080

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7ae5515d1c67f259486cbcfe7a06c36d2b71adb83fd5f1864217cc66a4de5ad8
MD5 3829ad5286c370bca2321a0eff156349
BLAKE2b-256 dcd68422606a4805d9216fdcc2611884abd2f9c653c2c06e379c844b6be4ef13

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fc25adaab987e55ffbf8eea905f99302d4c1ce92fde7b10d17688b7107d55d1b
MD5 1f10d6d226b41d56de9851f656333e2a
BLAKE2b-256 97ff05affa562e5eeb2c8a9144774e05051753f8c8b48a1fffd635697ab24e99

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 43c6ee928be28b419f21c9ec1f74c46331688bcf1bc43a7d76b7f086c40ad7a8
MD5 7432fbee86c09bd759f039641d33eecd
BLAKE2b-256 2e701b7d86191ce05b661683e0655f017b7748c1497673f89b123202ccdf9ca5

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-pp38-pypy38_pp73-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-pp38-pypy38_pp73-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 f7aec4a768c4bcd7c420864a9e5548d4e10c9d3f4563c8af4a662574df6defe8
MD5 a95baa402ab644faf76751af6b84f721
BLAKE2b-256 717154f8458cec0d1ae433362789bc2b4a60674e627eeb59dd829d4c9f60b224

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3295f83289894be65ec3a307dc0c66d114dc72a967177b39901cd1ec21d63d54
MD5 e157aae8f8695a6c553043541fa7f817
BLAKE2b-256 736ddae85f981dfe5775e6ba732796cc7f8f6817f722acef2c434d6a50cf82bc

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8d579a8fe449113b2ba14682d3c57b22b5883e0900eb2b0a6b0208440d991611
MD5 40571712a287265f560f7f52dd2d19cb
BLAKE2b-256 3ba14a4162328813f15f6a719b6d6c9bcdd938a990c7b030dd49e009030164fa

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e8f90dc372358190f5912e8ab819293a119b9bef1673fe397173d9fc0ec1071e
MD5 04ff8d3d0341177da3b95ee94f9b2cd1
BLAKE2b-256 a0c0fb04bc5d2eb566559309cd9aa59eaa79d27c3285bcaa08333bbc36ff54d1

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp312-cp312-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp312-cp312-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 e1fb916b8b588b0a5ae8625e7e1ef7869ddfae1736f872366bdbe07d6819a813
MD5 7c86918623f291c5f768c00a2e97bdea
BLAKE2b-256 c3899071e85d3e577dba3f7c6279716905a4d5c16121e1040dffccd8300b5c84

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 360f9bc2fcbba48c93444d8fdef051aa34df4ce7a909f7eb3d1167d541682f52
MD5 dd9375565eedc452e38716a4da783596
BLAKE2b-256 7eba93a0d3b1b40c7844e747d300b2678e170b76d3629f324ca9493e5c5d9fd4

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6494429e588b545b6901000ca4ddeb5852c1559cee46c0ed4f86ece42bade6aa
MD5 e990f697aaac30d85547642c50da9694
BLAKE2b-256 265cd9996c74f87a699a3d6590013c584667055245e04044e7e5731b8624b536

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp311-none-win_amd64.whl.

File metadata

  • Download URL: dolma-0.9.0-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.0

File hashes

Hashes for dolma-0.9.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 dae239cfc23c1c96781f52eca581ade34de4da6c1b24c867deb989f7ffb64fd8
MD5 2e8341cac0cce49f7f8439d0506976bd
BLAKE2b-256 21a043d460ec8003a040d59088e0f04da6776e6e840a74f3e3551452d979200a

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp311-none-win32.whl.

File metadata

  • Download URL: dolma-0.9.0-cp311-none-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.0

File hashes

Hashes for dolma-0.9.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 eaa14e60e8177c4da6e84ecb7b09be060de6f132f19827589a86c9d160e8e96e
MD5 26c2d2d33b81177095fda05f315eae57
BLAKE2b-256 e27d1c524cb5b9e6cc940e1acd744521718a0e5ca46d549035b2c6b82fd021e4

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 87ece9ef2b40276f895706b12e55136b69672ab4dc87a61ae92eed6bf70c5604
MD5 a8248a06254a81f28bfa2febf4b5ed58
BLAKE2b-256 72fb9c806fe9421131cb2a7b26f31620a463fc4049370ed7afafccf02428bd4f

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp311-cp311-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp311-cp311-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 8d4fc4daa1aadbabe0d2036047fbba77a167e157a137fa5a367a517ccfdedbd1
MD5 cee4ebd29e354f8141e320ecda7895dc
BLAKE2b-256 89916c29f9c8303d8a7a9a958c5b6dceb095be8c41c0f47d195593611cb38a8c

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 26c9a690462d8e520e2d5690ee0e1d0c555f5f90096b3587e52a7951dde709b9
MD5 e7b8678e42724dc57b5a8d0fa0e3ffbc
BLAKE2b-256 18e479211dc5c53d53a3f0e2b3b5e46c54041a4bf363e6e7d43d92b83e9f9411

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 be93485fbcbb965eb57fff50cece782860bfee805e98443c0a65863493952eba
MD5 84345f87e5a9f9a5794c84d53bea63c1
BLAKE2b-256 d997962df725c76092e7493a75bc062642ab6fa8de26c8ac77ed98ab80b38774

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ad188a8ad92329aef79c72a170ef3f7a601edd8dd36630832f6a5adc84f85d49
MD5 1684393f623b967501b3392d77de7c06
BLAKE2b-256 b8bcec8dd037b9cd4be176c5ac9607f74445436a032b6da2f64805087ac54f1c

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 911fdac1a63b99977c5cfe4578e9b08eb847a64ddde4b78a438052a698dff853
MD5 ac701d646a9fdb7fd3f08a275a8c8a15
BLAKE2b-256 330d38b5869c3517693457dfff90e37cc12541c10a0f109f3d87f755c89487f3

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: dolma-0.9.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.0

File hashes

Hashes for dolma-0.9.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 ed8cdad50d39edf5306ce6dff209147e68a41e8d93aabbed81d024bdfeea0549
MD5 dad8e3425168e5a06e6513fd62be1fac
BLAKE2b-256 eee84351a86038a5b759b21abcd19bf711a41ba4d339d0da62e326042df6377c

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp310-none-win32.whl.

File metadata

  • Download URL: dolma-0.9.0-cp310-none-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.0

File hashes

Hashes for dolma-0.9.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 5b8fee00b3ed638d5da202a37e724f614d59d80d3077c77687f63f8680a4a406
MD5 82449eb86c5b64bd734f977167d4f806
BLAKE2b-256 32ed55ad43201c1bbae6e4b49d0be07faa361a364afc557085dd295cf25f09f0

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b73c0fab67105ec0b9914e0d0543c9fa9d664628653cf0e9d5dc6b5999bf0fd9
MD5 f6a3f2d77fb3f84f8ff01fcdf4c50e47
BLAKE2b-256 71f766e98701765cb0439bcf89675e7af9f89e5a1bb272fb32210fe1c0fb2a23

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp310-cp310-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp310-cp310-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 3311eb8a33cba4c8f3e230ccdc50d9aebdf93651620fbefbcaf66402c7ad2671
MD5 987cb2448bd55c7302f1c115814ec8b9
BLAKE2b-256 d2fb8bb4ee91c185c08605da5cc35fafdc0956c9c3ad65a02d5f81059bc3a193

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0b9d273e1351c55f54723d12758f03baf710ca842c62cc6bb065f37d5c45fd98
MD5 b8f221cebac18405eb7f8ff1b3fba8b2
BLAKE2b-256 88ad35cfe35ce84857bbb3fa33010d44c70ac62afc1413fc6b2d2cbbf0d33692

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ba40ddf3b674bf244b55ea4bcacfdee3e65515fbbdfa36cc6e3a6a9d47fa4854
MD5 140cb6827fa508190a7143be907d2848
BLAKE2b-256 8c79cc7e2ec9fd45d44e82d014df964d74981c622a5ccae63e133fe45cee4960

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 21fb886531145f015769e6be1a8b11e6f224e7fcccf1ca2e7a920361985b4076
MD5 05aa67e54ef3c63a72c2d3dbb6456ff8
BLAKE2b-256 a22acefc4ab315531b6e3b193a46ab14bd3db50beede6ca2ff6f64f3e09696af

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 440429dfb7f84375ba4729eaec064f5d6d4562c05be796ec53cf74b37e513356
MD5 b259f5979a5bd7347e7099d5d5b148d6
BLAKE2b-256 b9774cf8418fbb4e23d8b6874bb617aff0f1e63ec1c5dc96234fbbfb1d00f308

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: dolma-0.9.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.0

File hashes

Hashes for dolma-0.9.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 8be4adb00b97c1e4f0b8bcee8f1118f4f3d50a1595978eef0fee77dc7d8f3523
MD5 e160e35e95b5e161f8498b4d2a37a438
BLAKE2b-256 669d37ba8bab6f8c4b5bd3e23a6adda06bb3423062a13c1458f4c4c5803aa7bc

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp39-none-win32.whl.

File metadata

  • Download URL: dolma-0.9.0-cp39-none-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.0

File hashes

Hashes for dolma-0.9.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 bf1963e0fd657a86eb9f63d828bd2ad9c0dcc578715dc0ad2f4b3493e47a9e57
MD5 b99b63b5d0bcfe81ce34e5cd7a4facf6
BLAKE2b-256 267ac9447d817582ebbc34f15fb76e229ee03e336cbeeec7b251ea15931b3b92

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b8186b81183767cf6934f263d0cb6155e3f4da7a62f3b42b068b4ddfd7262ca4
MD5 a56333c1a286b4b5379d8b8aa9fe2182
BLAKE2b-256 d5cb13952ce5d857a9bfed62461ae646782818899ea5354769090aa632091e0b

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp39-cp39-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp39-cp39-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 0382e5dd9d09f451fbd75662a91161a8a92ea01e9a65787af31bd52a105999fc
MD5 0837567707e8f802ea0174c3146034f6
BLAKE2b-256 80ca53a7b5a35406159efca64e60633cb10a8af5b8c3bfc3c3e01702682450f7

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 794b260950fe309d9080ec4130d62ceb33b92bae0980987fe1466df44480b7ed
MD5 0edb211daf2148f6d735fbcf36fb1121
BLAKE2b-256 3bfcd91ba5da9e9585879f34cbfe4d24449ebd8c0724c1e2677c97ccfcb01a8a

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f6f84f4e04a74aea77c434be071628fd75475ee14ca7f9dfbc083919b3bd0728
MD5 0f6f8af8dbc49f2b321a147429beac21
BLAKE2b-256 728254f140c5c22cc4be6e9fed1d98ca2bfb6e62b99f2626430da00aa4d9b948

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: dolma-0.9.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.0

File hashes

Hashes for dolma-0.9.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 403cd31aa1bc8117d2ffcee68aaf12e7ad5c5550fcbb5cef4b158f0b4164c73b
MD5 4909aa1586762795155128ea083f7623
BLAKE2b-256 9f794c89e3c45cdc6ef09ba79c0245d6a47008fa0666d677b47add0c2a5bc50e

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp38-none-win32.whl.

File metadata

  • Download URL: dolma-0.9.0-cp38-none-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.0

File hashes

Hashes for dolma-0.9.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 7dd09e39458d2148b362b4590dcbfd0d4fb97fb5206bf4568f4222834a3b70a4
MD5 25c7bdb3bad03e95eef28a2ccda00b36
BLAKE2b-256 a8b70cb828b2ee6338aaf0c1f0d4f292ff939b81170cae13b56f4a18e2c85cb1

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 81f15d72d65945b64ee2d5d3130afc752fb3f497d7e35724e8a03abeaa1cd60e
MD5 2a1df1a80eb07ccbccf051962a529a7a
BLAKE2b-256 d8aa1f8c47d855bf169821b99d6f425acb6294f3e26fb7defc0df32a8271682f

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp38-cp38-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp38-cp38-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 866b8aa2392cc602341b7bea767b9fa9abb947f90c2a971ec7ddca48263c242e
MD5 89ec006304740908f89cfba1cd1a8493
BLAKE2b-256 96a1a23c22d79e185a15852c73134a8e24e5fb2fc379d57415f7b16e485d6441

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3d59e2e862e758e62f6b6da7502b6809952a573fd2d5c88ea284783f44e52557
MD5 93ff7d8ec79f4ace7014fabbbf0a84bb
BLAKE2b-256 24d9deab0c51dcb25185200e8dedc85f449cf489081bcfbe7bf1f717e1c72fcb

See more details on using hashes here.

File details

Details for the file dolma-0.9.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 182553db9d8fcbe852a24a150f89b317dde4fbbed8a930a1b8ec2274ce9c7f78
MD5 c0d550a4d97996b0a65c5e89af45bcd9
BLAKE2b-256 11df39613514592150b1e98bc12cdad2d73530e2dd682d13c2628ebbc380bf2e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page