Skip to main content

Data filters

Project description

Dolma's official logo. It's dolma written in yellow, round lowercase letters over a blue background.

Dolma is two things:

  1. Dolma Dataset: an open dataset of 3 trillion tokens from a diverse mix of web content, academic publications, code, books, and encyclopedic materials.
  2. Dolma Toolkit: a high-performance toolkit for curating datasets for language modeling.

Dolma Dataset

Dolma is an open dataset of 3 trillion tokens from a diverse mix of web content, academic publications, code, books, and encyclopedic materials. It was created as a training corpus for OLMo, a language model from the Allen Institute for AI (AI2).

Dolma is available for download on the HuggingFace 🤗 Hub: huggingface.co/datasets/allenai/dolma. To access Dolma, users must agree to the terms of the terms of AI2 ImpACT License for Medium Risk Artifacts. Once agreed you can follow the instructions here to download it.

You can also read more about Dolma in our announcement, as well as by consulting its data sheet.

Dolma Toolkit

Dolma is a toolkit to curate large datasets for (pre)-training ML models. Its key features are:

  1. High Performance ⚡: Can process billions of documents concurrently thanks to built-in parallelism.
  2. Portabilty 🧳: Works on a single machine, a cluster, or cloud environment.
  3. Built-In Taggers 🏷: Includes ready-to-use taggers commonly used to curate datasets such as Gopher, C4, and OpenWebText.
  4. Fast Deduplication 🗑: Speedy document deduplication using a Rust Bloom filter.
  5. Extensibility 🧩 & Cloud Support ☁: Supports custom taggers and AWS S3-compatible locations.

To install, simply type pip install dolma in your terminal.

To learn more about how to use the Dolma Toolkit, please visit the documentation.

Citation

If you use the Dolma dataset or toolkit, please cite the following items:

@techreport{DolmaDataset,
    author = {Soldaini, Luca and Kinney, Rodney and Bhagia, Akshita and Schwenk, Dustin and Atkinson, David and Authur, Russell and Chandu, Khyathi and Dumas, Jennifer and Lucy, Li and Lyu, Xinxi and Magnusson, Ian and Naik, Aakanksha and Nam , Crystal and  Peters, Matthew E.  and Ravichander, Abhilasha and Shen, Zejiang and Strubell, Emma and Subramani, Nishant and Tafjord, Oyvind and Walsh, Evan Pete and Hajishirzi, Hannaneh and Smith, Noah A. and Zettlemoyer, Luke and Beltagy, Iz and Groeneveld, Dirk and Dodge, Jesse and Lo, Kyle},
    title = {{Dolma: An Open Corpus of 3 Trillion Tokens for Language Model Pretraining Research}},
    institution = {{Allen Institute for AI}},
    year = {2023},
    note = {Released under ImpACT License as Medium Risk artifact, \url{https://github.com/allenai/dolma}}
}
@software{DolmaToolkit,
    author = {{Soldaini, Luca and Lo, Kyle and Kinney, Rodney and Naik, Aakanksha and Ravichander, Abhilasha and Bhagia, Akshita and Groeneveld, Dirk and Schwenk, Dustin and Magnusson, Ian and Chandu, Khyathi}},
    title = {{The Dolma Toolkit}},
    year = {2023},
    note = {{Apache 2.0 License, Version \texttt{0.9.0}, \url{https://github.com/allenai/dolma}}}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dolma-0.9.1.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

dolma-0.9.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

dolma-0.9.1-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARMv7l

dolma-0.9.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

dolma-0.9.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

dolma-0.9.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

dolma-0.9.1-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARMv7l

dolma-0.9.1-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

dolma-0.9.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

dolma-0.9.1-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

dolma-0.9.1-pp38-pypy38_pp73-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARMv7l

dolma-0.9.1-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

dolma-0.9.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

dolma-0.9.1-cp313-cp313-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ ARMv7l

dolma-0.9.1-cp313-cp313-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ ARM64

dolma-0.9.1-cp312-none-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

dolma-0.9.1-cp312-cp312-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

dolma-0.9.1-cp312-cp312-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARMv7l

dolma-0.9.1-cp312-cp312-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

dolma-0.9.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

dolma-0.9.1-cp311-none-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

dolma-0.9.1-cp311-none-win32.whl (4.0 MB view details)

Uploaded CPython 3.11 Windows x86

dolma-0.9.1-cp311-cp311-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

dolma-0.9.1-cp311-cp311-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARMv7l

dolma-0.9.1-cp311-cp311-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

dolma-0.9.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

dolma-0.9.1-cp311-cp311-macosx_11_0_arm64.whl (5.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

dolma-0.9.1-cp311-cp311-macosx_10_7_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

dolma-0.9.1-cp310-none-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

dolma-0.9.1-cp310-none-win32.whl (4.0 MB view details)

Uploaded CPython 3.10 Windows x86

dolma-0.9.1-cp310-cp310-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

dolma-0.9.1-cp310-cp310-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARMv7l

dolma-0.9.1-cp310-cp310-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

dolma-0.9.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

dolma-0.9.1-cp310-cp310-macosx_11_0_arm64.whl (5.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

dolma-0.9.1-cp310-cp310-macosx_10_7_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

dolma-0.9.1-cp39-none-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

dolma-0.9.1-cp39-none-win32.whl (4.0 MB view details)

Uploaded CPython 3.9 Windows x86

dolma-0.9.1-cp39-cp39-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

dolma-0.9.1-cp39-cp39-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARMv7l

dolma-0.9.1-cp39-cp39-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

dolma-0.9.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

dolma-0.9.1-cp38-none-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

dolma-0.9.1-cp38-none-win32.whl (4.0 MB view details)

Uploaded CPython 3.8 Windows x86

dolma-0.9.1-cp38-cp38-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

dolma-0.9.1-cp38-cp38-manylinux_2_28_armv7l.whl (6.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARMv7l

dolma-0.9.1-cp38-cp38-manylinux_2_28_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

dolma-0.9.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

File details

Details for the file dolma-0.9.1.tar.gz.

File metadata

  • Download URL: dolma-0.9.1.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for dolma-0.9.1.tar.gz
Algorithm Hash digest
SHA256 a7258eab560a832aaebf4e989d124d54cfd02bb4c4fc65a62531ac70788ca408
MD5 2fd4950972264f5498b7a25a8e096784
BLAKE2b-256 e974315e74e903b25bb6e0ad86bf16a58f3903d4488518b6fc3ea831c5cddfeb

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fb0cfb951861302bfe3535a82863e3d4e05d39cfbd4758a2f5c458a5cf428ee6
MD5 ac27faa21da0a204370aa5d5a86e2bd1
BLAKE2b-256 16e8cd5989cc7a4380b00ba4359f41eacde50a7a7ffabb9213684f3efb9aaf3a

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 e71a814fa87401f2dc999a3cdb152fd042e7b9318659b33ecdc58d574a35af2e
MD5 c649b88018e335bafb8456a321a47446
BLAKE2b-256 c32c945d533b6c350c1b726bec376a55d8e3b2a38131dc54265b70148e427b70

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b5ebb99ed16f9618757f883de48b3de56108e639fc19834ae11eff993d3fad5b
MD5 27ec84fc55acfd346ba5cc3c4e09ae0b
BLAKE2b-256 f51dcf0b4fd85e97ea1e1296ce72bd6675bf1762395b637bc45ab2f4f9132528

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ddea023d9735c7d127c1c900622a1e3d6c6d4df036bdd2d4dfc2e0ea79af3a64
MD5 58ec34f7ff4ab2d98f77bb18e753a1a6
BLAKE2b-256 d33094fa0b27640453350e34188c17d07510d81eec9bd38ed4a7386bcba404b8

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ccc532a855fb12af08e6c85f7e291d4092a0cb2a5d9fb4389008186668905fdc
MD5 29136238e99c4ab46d8abe39324bc640
BLAKE2b-256 f13eec9e197114a9fc6425ffd0eef19706d017b96f0db80b0c8c6f483e71712b

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 d3cdb8aa1ee86e4966e7cec0b5c63a5e63ffd8f2294521de89328a00a36b2b06
MD5 6716cc6b0ea16cfd8b778d9bdef1dafb
BLAKE2b-256 a40356c85a45d91d817f2488a37a2aa6acda66296b72b689ba841fda88fee27e

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bade12e56109545fab7eb64af66510d4f94d2fc4ab9ca2ae0816fd7518645e85
MD5 c30b1aa1590f338b1b5c6694b67f195b
BLAKE2b-256 2bac4a6a202c5bc7b4d578c92ed2ac360c4dd6461e9b0cf5cd3541ae2fb3798b

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cf2481857e5dd267e44b7b1d14d236950354556e7bd31bac0fd7ddfcd5b3ff5e
MD5 67c9fcef9212564627347a85bbd65004
BLAKE2b-256 13e11915923a615199c75a72cc6115a1b9758e175d6a4855fae82bbb4c417bf6

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b99f7c1e637bdd2dde09c3208491f53fd054d3e9a90c0e185dad4301c07fbdb1
MD5 8c0897b3d9df8a3c81878feff76945ba
BLAKE2b-256 cd5a8fdaa5534a7b63f93df23eebae44dc6477a179cc7ea24118f743e86dc29e

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-pp38-pypy38_pp73-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-pp38-pypy38_pp73-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 36cdf219fc84f261faf4883967a04d5614754fb1014cef3aba99a8edccc78154
MD5 52b576685a32ca8562a47b30f76cabc2
BLAKE2b-256 3cb479bb148568c6cc65859b1bc304e53f44e61c432b220752ff0a2c7b88fe04

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b89a0d9fbd6b0d995f18b8b4e2c514417a605aec40585b7e3d1e24d5c4c8da0c
MD5 3033d2f6224de6815797418a1f77495b
BLAKE2b-256 bdc61a1763191a41c41e47a2d9e19a1ccf2f590b4e9132f490a5581884a81bea

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3e67ebef2d004a8a960fd1f74509a2a22102d24bd93029c037e4a68eafbfbdc5
MD5 9d8b3ad4fdf95cb7f6ef2828c55335dd
BLAKE2b-256 6fcb39865e3de3482aebcb48bbdbe0c584b2f43cbe1ee9b26af68a953ca020e4

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp313-cp313-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp313-cp313-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 6d61790107502e1d489849bcaafa2b48205d2efaec75c15043faf579354b12ab
MD5 09abbae6b8434b40c7e6133de3eb0bf6
BLAKE2b-256 9fbd35a62a23c5d9e4c8e527bc4ed7a718324698699a3ca091d62443a1ba6da3

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9c70af93b4766cbba116e645be9cb968d756fb7695cba38811b8dc4e728596a1
MD5 eb3a05a8bfe38ee34c3a8a1506ccb5f8
BLAKE2b-256 eb8557a1899888175dbe8d00a26af8112445b04953ae47c956e95e78c08f516a

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp312-none-win_amd64.whl.

File metadata

  • Download URL: dolma-0.9.1-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for dolma-0.9.1-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 b943747e12bb2f603c7cda30dea3b635fe3d37dc9a46f13ef90bfcbf8bc27316
MD5 b81660db5480b35b0e77ee850d0a6ccf
BLAKE2b-256 6c1a82be50b8b93826c562c110bec21cb50e3da92ded509fbb011cbac05eb81a

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 507ace9ae2b9056c296670379895f3b85c91e842222449a208a6457d36888196
MD5 4ddba1c9a0b1d825d4905188698e9754
BLAKE2b-256 a270c31d3c7667b55e1d5dea0cfa8b281e377565936ca57fa2d847700dcde6f4

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp312-cp312-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp312-cp312-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 8119a654a203a54cd651755c9a9ecdb2c0c0f8844bd7cb857d09bfe7765e2583
MD5 d04e7443c11ed69a288bb303038c86d3
BLAKE2b-256 300c16525963f40bdcb6312dff5f074da598c96cd0c22bb633cf5e71be9a5ea4

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2835f7e0f49b7aa38a7ee67bad7115c97916cdb603daa9731a2bdfec44a9a54f
MD5 34d37e3d194992bfa425d07a4674f4fd
BLAKE2b-256 9382ed56ee06d5b130bdbb09ac084c83c48914afb99c27511eee666225f927d1

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e41391696841ad2e41cc731471d71692527afcd37add16ea88362f122a354694
MD5 20215ca738846d5c772fb6bc7c369f31
BLAKE2b-256 83fbb22458ba555ec51ff1dd5326893941e676ef347c9a79fcec1677f7a29f20

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp311-none-win_amd64.whl.

File metadata

  • Download URL: dolma-0.9.1-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for dolma-0.9.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 4da369b53098d5775899369e8ed4237d905045d8947ef06b846e6dd6598ed7ca
MD5 e4346517ccb513bd4404d9d9b1737838
BLAKE2b-256 e20af672e5efbf0c3252a59543105f35cb8500f21dd45486058204477e7a13ca

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp311-none-win32.whl.

File metadata

  • Download URL: dolma-0.9.1-cp311-none-win32.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for dolma-0.9.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 fc89f916f3e079ccd4b0f85a4cc7d7ba13d0acdec1d30c2a14d1e6ad72e6e848
MD5 d82f0edd164aee4f351a943b0844a279
BLAKE2b-256 df4ddcba638b97bcacda48ecd23b933a9946424dc3093e20fbdef92547322b43

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 848a8dfdfea0d311c7456dc671b65387d7db6d189191689c1878cb12fb391a85
MD5 6db7a3d8601fe7deb86d45d63c5b575e
BLAKE2b-256 8d980e37ef89c063c28c9092bfbf19266c4f01dae75ab5eac382a89d2b3e9d68

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp311-cp311-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp311-cp311-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 14230c71c4fdc459dba158bfaa0c4a3588908c6c8ecbc34905f89918ce8df350
MD5 f745da7452c5c232b026b9bd43348ffe
BLAKE2b-256 6553dc0c192407a54b01e521b2794bd14ce8016ffa19014a16043a4b619528da

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4c9c49954d765285c728a5b4662b21ae951e0812194f315f0f932db489c81c90
MD5 479cd82a2de31b82c8c69ac1b2bd1fb4
BLAKE2b-256 485c446163b68b2611e163f2555a029fae63c820b1363ba1cec22943dfef69d6

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c2573900ccb42df040996f98c797b9be5ef5e8b8b4bf4c2c34676c5d867f2c48
MD5 9348f8efbb6c020381ab8891ff620bfe
BLAKE2b-256 e813d819a5dc2eee6df3482f0e9eb90eb0ff7824802508e15094351ed8873a07

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1b15297984e600c8c66848a96355acb4f156576c1c2a2fd3fe45abb0dbccfffb
MD5 33f4495b686bf5f01895750cbd7428ad
BLAKE2b-256 defc6a270e4e72c411cf84961cbd3b993784a3f4dbf9cf6cf0a31afeae9715ec

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 170ade76651fac282a7c202fe76513f997e6793be832263e4a107962f895e944
MD5 a2b276f1e2822461ad518997795b6bf1
BLAKE2b-256 05af5709c1f06116f99fdf0db3a91dfd346114af7b30c0ce19e489d3b12aa64b

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp310-none-win_amd64.whl.

File metadata

  • Download URL: dolma-0.9.1-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for dolma-0.9.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 f0748eb18e86ebd3aa0bbda52caa6d0aeec38ebc57196a17400fa749cb782950
MD5 6da7f47052b5fa556bb262ea3b7c63a9
BLAKE2b-256 35f53e0e7ea0fd863be6539321b339207a0c8c3f07432f495fc3036c56aac0a2

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp310-none-win32.whl.

File metadata

  • Download URL: dolma-0.9.1-cp310-none-win32.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for dolma-0.9.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 e0dc9827d80e616dc5e1ce15464c2aa69729a419afc9db75c57f8f8db0f35bf5
MD5 8646b9f140c1e697367f35c868bc2629
BLAKE2b-256 8155a584ccb77d47d9d103aa0c19f5096bf9e66a17593b493c7362bb8ec9aa89

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2a137de6740c65732cdb0c955aae42bc1686d27f326a15c82e826d361305e34f
MD5 9363c0002d772d61d0a922ac9e00f92d
BLAKE2b-256 ddeb210a9e0e99e0e42c96d6006e1dc1ce347254b154020e1fb39ce9a48482a4

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp310-cp310-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp310-cp310-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 327a451ba18968d7dd624418d825da1f0bffd6555305261040fd214ac9d85faa
MD5 af2a60c6a2861573285a7c64fb4e7f3a
BLAKE2b-256 f9c9bb15e2f910937bb844ea85194277b3d75b08526202df5c33bb9c9d1ab8d1

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d3d7c6660b42c37145c42752f3b73e1ed6a3a9e0fe35a049acade3d774750c96
MD5 4318b529c20fe52359eb692bffc36f4a
BLAKE2b-256 f8f061a3ba0fb201af78ab0bbe9b172b66ae3c3b23b876e666ead0eb79ceca54

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b4b9d70210398516ebf9e04ee62193097edd8aa399cf1ce80a02e92c07f14d16
MD5 7135cc5cbc68d958cd6c2c9a1fc0f7c0
BLAKE2b-256 b74636e2319d2cfb6b232dc693107fdd8f0c9699f5d46071ea97ed682526bde4

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bdc40fe0062cb2b53d6a1b113e2403f3bca0b07444882f4a8e4bf94ba9301c4c
MD5 ede5b7590b65d6f8a0f720d03e83d996
BLAKE2b-256 9fe0f1f8eef0ae2a5d7e887c885e617d1d745e71052002500ca7e59778f0fdf0

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3067a9ec280c077f77ae4032797c6dca38940f593696d5832ada5e8e911771eb
MD5 19ce38752a9f64a614f7217acdb937d8
BLAKE2b-256 4acbae9f6282405e63456af8eaa495b9d712338dd496d408351a6a562556dab6

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp39-none-win_amd64.whl.

File metadata

  • Download URL: dolma-0.9.1-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for dolma-0.9.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 420cb75c8ecd58a63e2e945e342493f9809146bf1819c3bce47473e481b73aaa
MD5 86d5faefdebfa2b8e85ff4f83f438d8c
BLAKE2b-256 b9ee81220ed35e319bbe6accede20e1dc92e2b2e3cb0d88243eead4314b4dfef

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp39-none-win32.whl.

File metadata

  • Download URL: dolma-0.9.1-cp39-none-win32.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for dolma-0.9.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 4513114dbdffb92e91c0f80ed2f9409877496edfd32c70add7e9f5cbfa1ab035
MD5 a466612fc21f37aeabf47351e726cc41
BLAKE2b-256 da041dcdc8abbcfe0b2dbf630408ae00220cbcf161587ea16750eee226fbff8d

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1f3931f7c4b585f1b5ec1a2560ed3904b083e658670fad686804e16fafc14128
MD5 64c1f9947ae79919350e2baa74aa0017
BLAKE2b-256 97100f8e1f9c7a23588199a8303cc042b43d7dcfac72362a3d8e91a81d6b7309

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp39-cp39-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp39-cp39-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 1e3321abe9d4aace10d27321248791fb76ce8b76184f013811bcb5dba61e8253
MD5 adfeb139a7b0fbacd9803f00215955e2
BLAKE2b-256 46c64946ba0648c78c5e684727f06e4a895cccff5ee4f29666dc5b0d35a6552f

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 458a800508150e8585e01794ad26bd7592343aac2fefd2cc6cb774fd8308ea60
MD5 4a5a0101053c6dae5011ee979bc39824
BLAKE2b-256 708dca1ba66bdd50f531b76f02ab778ac5ae3c84f6248a8f939bc66694ae6e1c

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 067750d2767f154279a77992cc9bf117de1da50fa3ad5efed3de1036efcfafd4
MD5 3fb113b92b8ff25f77b15ea61d427ee6
BLAKE2b-256 f064cbd17b7d163384565704f4fb6be74a4f21193be2ae7e04bb75b2bc175511

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp38-none-win_amd64.whl.

File metadata

  • Download URL: dolma-0.9.1-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for dolma-0.9.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 bc449f5ccea1a1c995eee76c6258b4b6d21174a11feb1377a23b2b304f34c82b
MD5 c17dc2b96d4be34714cd39b2e4bda33e
BLAKE2b-256 9161fcee160b0cb34cf06e6c7d9df15cc242b99fb4bc84ae43b2df865674a4eb

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp38-none-win32.whl.

File metadata

  • Download URL: dolma-0.9.1-cp38-none-win32.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for dolma-0.9.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 9b33a273f20cb4a97597717e92b0998535325156e9fa6c0cc464f414db9f8d52
MD5 8abac8baa78391488125e9b79fb23505
BLAKE2b-256 bf4a7d824e793adaf21dd4b86f420682b80cbe2a0730af435c7e4a67bb6e0c7d

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 eb8b39da11223af3c8e0f5c542d3a39e3a5ba39ae411c9c33c261d20f975a228
MD5 1d00a27094f4874b31e79ce7e20c69b3
BLAKE2b-256 3c1020df3ed96e8164133917489e6fee241fb7c18f95b41047154b7dbb5b0fe7

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp38-cp38-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp38-cp38-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 817229ce4f73f7dff9d4be0a07edc48394daf07c6d90ed52eec2e7bc1b22022f
MD5 daa78c7f7be5aab71208f20ae95afaad
BLAKE2b-256 833cfbbcc73f5bbbe6548cc8aa0af2ba693f80c44546bce1fe05ec8f768ef6b1

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 580a681d076beb2a22ebd81ee684a830807363350c147264c1cd5c80bceb4f81
MD5 db46f567ec9ab27a7cd61638264be30e
BLAKE2b-256 e3ae4f61beb5abf4166e8959e99d9812539ca301738ee74a3a448571dbe3f2b2

See more details on using hashes here.

File details

Details for the file dolma-0.9.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bee15844b2eae4d53332fec4a5b74eab2916d9b22567c915676e3fb8e29659e5
MD5 b21562d7326147e5f6c4c174c3a53b04
BLAKE2b-256 5f8f48a235e92800ee3b4df2f5758552c22b4bac006cc4611b87adb3f232056c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page