Skip to main content

Data filters

Project description

Dolma's official logo. It's dolma written in yellow, round lowercase letters over a blue background.

Dolma is two things:

  1. Dolma Dataset: an open dataset of 3 trillion tokens from a diverse mix of web content, academic publications, code, books, and encyclopedic materials.
  2. Dolma Toolkit: a high-performance toolkit for curating datasets for language modeling.

Dolma Dataset

Dolma is an open dataset of 3 trillion tokens from a diverse mix of web content, academic publications, code, books, and encyclopedic materials. It was created as a training corpus for OLMo, a language model from the Allen Institute for AI (AI2).

Dolma is available for download on the HuggingFace 🤗 Hub: huggingface.co/datasets/allenai/dolma. To access Dolma, users must agree to the terms of the terms of AI2 ImpACT License for Medium Risk Artifacts. Once agreed you can follow the instructions here to download it.

You can also read more about Dolma in our announcement, as well as by consulting its data sheet.

Dolma Toolkit

Dolma is a toolkit to curate large datasets for (pre)-training ML models. Its key features are:

  1. High Performance ⚡: Can process billions of documents concurrently thanks to built-in parallelism.
  2. Portabilty 🧳: Works on a single machine, a cluster, or cloud environment.
  3. Built-In Taggers 🏷: Includes ready-to-use taggers commonly used to curate datasets such as Gopher, C4, and OpenWebText.
  4. Fast Deduplication 🗑: Speedy document deduplication using a Rust Bloom filter.
  5. Extensibility 🧩 & Cloud Support ☁: Supports custom taggers and AWS S3-compatible locations.

To install, simply type pip install dolma in your terminal.

To learn more about how to use the Dolma Toolkit, please visit the documentation.

Citation

If you use the Dolma dataset or toolkit, please cite the following items:

@article{dolma,
  title = {{Dolma: An Open Corpus of Three Trillion Tokens for Language Model Pretraining Research}},
  author = {Luca Soldaini and Rodney Kinney and Akshita Bhagia and Dustin Schwenk and David Atkinson and Russell Authur and Ben Bogin and Khyathi Chandu and Jennifer Dumas and Yanai Elazar and Valentin Hofmann and Ananya Harsh Jha and Sachin Kumar and Li Lucy and Xinxi Lyu and Ian Magnusson and Jacob Morrison and Niklas Muennighoff and Aakanksha Naik and Crystal Nam and Matthew E. Peters and Abhilasha Ravichander and Kyle Richardson and Zejiang Shen and Emma Strubell and Nishant Subramani and Oyvind Tafjord and Evan Pete Walsh and Hannaneh Hajishirzi and Noah A. Smith and Luke Zettlemoyer and Iz Beltagy and Dirk Groeneveld and Jesse Dodge and Kyle Lo},
  year = {2023},
  journal={arXiv preprint},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dolma-0.9.4.tar.gz (4.8 MB view details)

Uploaded Source

Built Distributions

dolma-0.9.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dolma-0.9.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (6.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

dolma-0.9.4-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (6.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

dolma-0.9.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

dolma-0.9.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dolma-0.9.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (6.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

dolma-0.9.4-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (6.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

dolma-0.9.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

dolma-0.9.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dolma-0.9.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (6.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

dolma-0.9.4-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (6.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

dolma-0.9.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

dolma-0.9.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (6.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARMv7l

dolma-0.9.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.5 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

dolma-0.9.4-cp312-none-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

dolma-0.9.4-cp312-none-win32.whl (4.1 MB view details)

Uploaded CPython 3.12 Windows x86

dolma-0.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

dolma-0.9.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (6.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

dolma-0.9.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (6.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

dolma-0.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

dolma-0.9.4-cp312-cp312-macosx_11_0_arm64.whl (4.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

dolma-0.9.4-cp312-cp312-macosx_10_12_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

dolma-0.9.4-cp311-none-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

dolma-0.9.4-cp311-none-win32.whl (4.1 MB view details)

Uploaded CPython 3.11 Windows x86

dolma-0.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

dolma-0.9.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (6.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

dolma-0.9.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (6.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

dolma-0.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

dolma-0.9.4-cp311-cp311-macosx_11_0_arm64.whl (4.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

dolma-0.9.4-cp311-cp311-macosx_10_12_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

dolma-0.9.4-cp310-none-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

dolma-0.9.4-cp310-none-win32.whl (4.1 MB view details)

Uploaded CPython 3.10 Windows x86

dolma-0.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

dolma-0.9.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

dolma-0.9.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (6.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

dolma-0.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

dolma-0.9.4-cp310-cp310-macosx_11_0_arm64.whl (4.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

dolma-0.9.4-cp310-cp310-macosx_10_12_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

dolma-0.9.4-cp39-none-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

dolma-0.9.4-cp39-none-win32.whl (4.1 MB view details)

Uploaded CPython 3.9 Windows x86

dolma-0.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

dolma-0.9.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (6.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

dolma-0.9.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (6.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

dolma-0.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

dolma-0.9.4-cp38-none-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

dolma-0.9.4-cp38-none-win32.whl (4.1 MB view details)

Uploaded CPython 3.8 Windows x86

dolma-0.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

dolma-0.9.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (6.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

dolma-0.9.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (6.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

dolma-0.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

File details

Details for the file dolma-0.9.4.tar.gz.

File metadata

  • Download URL: dolma-0.9.4.tar.gz
  • Upload date:
  • Size: 4.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dolma-0.9.4.tar.gz
Algorithm Hash digest
SHA256 804feda549eba1fbdf3207cb51424180704cf96c3ee8954794ec61ad05b87783
MD5 5d0732e7a1e36b2deaa63a66289db904
BLAKE2b-256 e85632fc89ad3e4de2240de6f4e2cc84808600c0dab9bf16d8d299b116232c0e

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39e433c7fe9e1e322281acedb54b001d49425600713b739f5c9bf0448918c4bf
MD5 28a57677c633bf78946128a0de73d0c5
BLAKE2b-256 6af89ee1d1d75188563a9d06caf39400aa72480c5d3faac9f72cb810e5153dc8

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eb57f5831c97c1cb3250f557070a064c9d2daf7bd983a13d903942bc9f0bb99e
MD5 9b3a3a17d06fc7cc6a7a9db17a5d3bc9
BLAKE2b-256 36c6e4fe48f55c3fc0bf9d2932dcb5aa27a1e0ec3c121aab8b388b30821650bf

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 ab6f0b64b6195a7e796363bdbc50b0da4a71c2c3a81759e6b58f2bb1df12323c
MD5 57a56aefe4500e285b9e3d61ad2bad87
BLAKE2b-256 9ecd867049174ca3903759de34f7d7943f4b1b83c10e66bd387fad25bd9a0ba7

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5d04411a8d5254c3991ac9e52d62bc75472cb075b7b66ce4226e262c1945d2f6
MD5 5b24c22f95b9c60cfb582029ff5b2383
BLAKE2b-256 659fd2edd8da623a78354820ffeed3cc18f32eee2017560295e35e9d5baf5b84

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3c35a8e9096d051000d2dba709e98e518471bfe2144cb3ffe09bf72232b2158
MD5 c5b6b181bf11281cc85f6ac35be11e95
BLAKE2b-256 764e109266ea3bfbc5f96b3b8d634509f03f50e06f311831772ab67ee2641cc4

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ae0b0b5ad6f4ec93a936bb6ef14804c5fde76bfbe4712c4c157692c3b2a8b4e5
MD5 71af0356eec6dc00336f7fe50bff789e
BLAKE2b-256 d4d389259f3c3dbdec66654396fb2397e346558d8f348f6635fee37ca95c7290

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 0bbc75dcb3f2c033db3cb8bd8907274422308d88e104a26cdfa55f6b1930a89b
MD5 7ba9298577b8478062441dc0564537ed
BLAKE2b-256 b3d4b2e96a2a528b9fa6f933ed181f7ae20df0139f69d768e59dac5530502ab7

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cd923182de633ffca5dd080ca38b750fd914b3687aeffb6a2825689c38c88346
MD5 ccfe7e80adf509e49233304e993d0fb4
BLAKE2b-256 9ac329e8ca6263c17f4de87485081d9527e70d94caac311906434be8276d42f9

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ae481963b112b8863bd45531a40580f72f3923792a370721c5875db472a5f8a
MD5 4e008b6ebb2e627d8599cd5f0aeb3bf4
BLAKE2b-256 c222593a6390fc2a40115221978fa80482fb280eff1c53507902f7b9b98ac7ab

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dc2ead8c6f5350d58e60ca0774e0c2be56b9ae9e04902f0d4141e2f739bbd04b
MD5 54ff5dba280da38402559b4cd0a4d839
BLAKE2b-256 9898d41ccdf80597f7dbb8d6ab084d95a3e074e4d9652ac1f723091de5bacd5e

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 01991b93bc60692c6dbdc16d5c1bf7675b757d8ddb2f870b5450675259fbf2ca
MD5 2c16c1383521fa29611adcc3465d2dd7
BLAKE2b-256 7bdf6179ac33bd05c4cfe2e144c05d974f5e978a92258fe6eb4bf07dbc10fb83

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8a25ee941d84c9f92202370b95dc5d41e7f6e73dd2942b03af551f24b47f7178
MD5 8e01d015c71c55488cea979634b019f2
BLAKE2b-256 2998fdeedd8475d59bee0a748a1d019915b5bc5e3b077505078ea42759269b8e

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 f57bb1c28a505513eed12da9f6ad3af44eddca63f4de41fab1f16ce181367df3
MD5 3c34dbb449b658f03f897fddf537c7b0
BLAKE2b-256 6366ce9188e9103c62b2a68ec7fc18c3ec5f3ec7f49c47479d0d7325a0ffcfde

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e2b5de6d9133b83db16d33bae1614fc86d4987f95995fb6bb0816568a3729abc
MD5 26e16fa3c3deced2bfb8ceebfb2db464
BLAKE2b-256 2217fd55b8f72b294bdccf843b97a3cfb156e151429a8d6633f053729197f14e

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp312-none-win_amd64.whl.

File metadata

  • Download URL: dolma-0.9.4-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dolma-0.9.4-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 bcdc8ff814a465328c7b29eccfa4f15df706cd5f5299400d72ae88efc88da816
MD5 0314969d60355b845988046b44d688f3
BLAKE2b-256 0785ae4c1ab40c012e0465ff545c742a0783afe2c28b0da14f157dfe97be95e3

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp312-none-win32.whl.

File metadata

  • Download URL: dolma-0.9.4-cp312-none-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dolma-0.9.4-cp312-none-win32.whl
Algorithm Hash digest
SHA256 73dfcd8682e30aab84e18059d1b189e81f82da6fd92dea63e1b6c91713df01f6
MD5 d6d3906f8c51759b320a388b40bad1f6
BLAKE2b-256 e616890910f2257e436bd1a1757dc54129150c10fe022a7275cbdcbd1f6caacd

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09da01b8621721e4483e8bc073189de510af8ca2bed13718ca4baf7fb3846648
MD5 47e06fcfaf34cb96cae4408309ddcfe5
BLAKE2b-256 e5ceca1ccb59c7f75171fc3e3101439e51f172ebb8e0f81309b7f23cd3875a3d

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0c05be92af9f654d4343957e62cbc5b60cd5223320a78ca5f07af32c02a9faff
MD5 fe4a25477a5223209068d940aa8efeb4
BLAKE2b-256 8b46d2e616a758c08dd74041620d8cd9c336cf69573f9bdb7dd82d455f4d53ea

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 1ea797c313b8c64484db73f89c70e5acdf288628eb45f95f1a87e5b0846dc3bc
MD5 94bf8f6fc8900ac0f24a84f12eaf1284
BLAKE2b-256 a575dad30f2668a6a8ebd7be3a6669a4b9087f0d5ebf889b5c09dab0e7ad2323

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 604e5634372cdffd2c4023999218838ca7ea2cece8b66764416a0d6604c2bd2d
MD5 65c0bae03d941884b38a170bdf0f2cba
BLAKE2b-256 2144d962df1e38116f975b5b54a9cc8cc23fb39fb77b0bb0f29f189d2fd2074b

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c032d828e5aee194316f4da4ef81d56e8f46531b9a8ab13c6e7fe30721b4a95d
MD5 e4638045a8fc398dc6a0582fbe2326c1
BLAKE2b-256 c3056bff91998a0f8b802af6f06fd6abf05f615e4b0aa6cabf3d8be484122b3f

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 a5cfd02e8faa438b0eaf3b354388a2ccd3b23c56c07cc3a597f7b360e00150aa
MD5 22db38396379d7cd9d9c3b16b00ac858
BLAKE2b-256 547379c2c5f433b1f3a230ac0818c1434928f9fd992d44f76f020ece5363c937

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp311-none-win_amd64.whl.

File metadata

  • Download URL: dolma-0.9.4-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dolma-0.9.4-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 3f8d8bac8d84edb58514cd3c60dfe0db533dbadaa1de05626381038b319495c3
MD5 87d4b08ab91381a464a3f7b1fa5c63f2
BLAKE2b-256 540925e00f176b332fb51f9cea311d5dd2de0ecf63e9a367ab197777b00e0129

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp311-none-win32.whl.

File metadata

  • Download URL: dolma-0.9.4-cp311-none-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dolma-0.9.4-cp311-none-win32.whl
Algorithm Hash digest
SHA256 abed7ee9130c1b0e482cd1aab239b8f4ebe63f7e8c6e434e1be734ed470c4730
MD5 b2afa7d1d71f16ec370ee53dbb510913
BLAKE2b-256 3a9ccba9ba46aa165c6f0255e0b948ecabfe74095349677a830bf3ad13643d3f

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0778d0dbd57eaa8142091ba4044066d08d6bf2f0f4fbabc1f9a406f8c16851da
MD5 9dff2664f2d08d6eedecf6969a9e231f
BLAKE2b-256 567db5c2e17959b47c873f8382d7cc3803f66220d31ef8e3ad577a9e52414d50

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4164215e80046d4eff7bfd4087d4360d2bb28464a992cddfda3ceab8bd54da4d
MD5 e71dc29d8f45cb611d637a0a641c3542
BLAKE2b-256 6fc4a8dea619aba1b373a912b22a650bfa98dacf7ab071b7f88c60ac4f8c62c3

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 11b99208c6d81a82d6209e1104c3450355108e3095aaafb15d34deec60b453ac
MD5 1607e3d51f860695214199af4c527b7a
BLAKE2b-256 856f34673e6e6839346d2833a9974c3fc8378bbdb0f33279de95628be1b8529b

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 72ed073d22578461c3eaa935a501407c7823bbb54f97466ac24906df15acd843
MD5 3ff32b68978d1aeca11f78ad517a1b76
BLAKE2b-256 ef0fcb5e9192ca725fa90d6895edf2384df33a2b1f1fd4639c9e892dde0e2c93

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1718828f97a280b823694a58c1940df9706744eab50611bf14ad6bb13799264b
MD5 dc58a383244b355bd8388b4ecfb59189
BLAKE2b-256 0ee593c40f61ac3a4df7d2d0b29a4e0ca43e46c992a7f76739b2c9a37e115fd8

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 8b49ea74492d7dbdd02976fadeb3c70cff67d6fa551e54864a2caf552fcfda12
MD5 99f8baf76eef95ef55738a335582d259
BLAKE2b-256 78f8a90d2c0c9af4510d115501c5076743bd3b725c5d49d8d0df1de1c83644b9

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp310-none-win_amd64.whl.

File metadata

  • Download URL: dolma-0.9.4-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dolma-0.9.4-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 9789db9f5f0f16f4006b470ec3c846e468f39e3c4444a4738615a2f6ef46fd37
MD5 5b012855aba43f19f6d5c2b43e9b170a
BLAKE2b-256 b86f24d0d81fbfacfcfe86f35f33c2d3b375fd1fee57f6a3f007a145d1a858ac

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp310-none-win32.whl.

File metadata

  • Download URL: dolma-0.9.4-cp310-none-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dolma-0.9.4-cp310-none-win32.whl
Algorithm Hash digest
SHA256 0ec26a34607ec6c8d79eef8041216201a58fbfbe54c95d2607b52851e383cf4a
MD5 b34775314b4cbd1503a3f76819fa460e
BLAKE2b-256 57e21a300cb8d6da3ceb9871583a368548405b3e3477edff80be422504d85e1c

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1083ea08dc72c6928eefe16a879ef234120fc9466cfcffff84e1b78dd5ab4cb9
MD5 cdb01157a5e8cd065691313a974b6987
BLAKE2b-256 8b143051e17dc10f9105bc896aa7c4286a9a2e689d8cac7e3abdf22a8681511c

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4d16ccc006362baa5a3b2fe204568710388e9d1ff63bdec1bc486ff8d204132f
MD5 e49c8ac9b55984a5e4c9a6ab3110effc
BLAKE2b-256 f593daaa612d6f0f7360b419040a86f9944c89a3e188b9cfa25df5bb130e7c51

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 abff2e207c1f9aec4625a530fe7a1517fd3d15c10c6e0a616b5a3e1712cea13f
MD5 56cce49d7206de9b2aaed3e297e7bb25
BLAKE2b-256 8f772da2519e7e1564f8b1dbf2050137055911e83e347d847fd6051aca282aee

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2b075406ff3b98bf262010ec704ce6172669d2ddad735f39a45d96c5fe3a7f6c
MD5 853942dd4e69b7bb15edf0f4cd60b94c
BLAKE2b-256 c7e2cf19898fc629593c66facdfbe31101364843484c9e0f52a76d19af84a746

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f872d1c10826e9357d50bd4d1e668f5a7748fce3f637f3ab19d932a9d29c01e6
MD5 1b8c2877422efcf8488c2741e506c777
BLAKE2b-256 696e9f3d58752c8428db1e63589d13f82e0eabb9cfad316df99f99003aff1d3c

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1d3bd6722fbbdf3bb148721beb471d9e5ba5dae158d2383a58b7b4985c0db4bc
MD5 2e7fe5c38caf5ec794c856c4c5a3d033
BLAKE2b-256 fa85823edfda0e15a275924dbdfaede2564a7a6e379c2613c4e953fac3d388a7

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp39-none-win_amd64.whl.

File metadata

  • Download URL: dolma-0.9.4-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dolma-0.9.4-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 5484ebfce6fe160987eeb53525d27404bb629f9282ea5c9fb4877efa17fa1759
MD5 a712a446bcbbc57d80f5b0813097ed3e
BLAKE2b-256 50ee4f5b2f7006fe89346f7ae005789b113e14714968da7b6433973eec3976ee

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp39-none-win32.whl.

File metadata

  • Download URL: dolma-0.9.4-cp39-none-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dolma-0.9.4-cp39-none-win32.whl
Algorithm Hash digest
SHA256 d0ee2f1a06d2a7ef506c04248b16296ee53712f9fb8f8e8c5a664243fe58a055
MD5 44ea38ecc0f5ad2d0cdf27a799b08a74
BLAKE2b-256 3799310c465de72749af590a83b96b2dc500c8dfe487f617f940c4fe150bf065

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d81d72921e304400a03d9e05788e967411a540d1f9c09b8f44fd267e16e7443
MD5 800ea93eea29d24221cc938d13a60f10
BLAKE2b-256 d5a1aeebc032027642a302370d12da96d4ed2c8119918a1c3ca745e0517aa7ff

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0b568e4e4b52b3d6f4bf7e07cc04daa736185578cf4edb63d10d07e11d17aa78
MD5 ff0040439a0b416ad7c11ba02abb5913
BLAKE2b-256 359dd30fd2d4e9d971f327419ae359bff3a842bd9bc78d7003a9011ae3319a7f

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 b9f32f35548de4aa98e16425890a88cc376fec36eb945717721b6fdb7dbe5713
MD5 d8c3d2020704804c88e37473d5e29ea9
BLAKE2b-256 13f1820e54979fd1dfc89acfde259dc56acb0ee6402869496251d7a8f9651af5

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f5e1c64eb145d3dbe8c1843cddc4ee79beac9160fa5be95f3c5f1712a6c77644
MD5 45bb109b2c8f509889cd1c155ef89417
BLAKE2b-256 d153cb51ee066c4f8a04ccbd42b7b0a7ee5770c7589eb2a0dc30cafe1819b74e

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp38-none-win_amd64.whl.

File metadata

  • Download URL: dolma-0.9.4-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dolma-0.9.4-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 55f49815819ec5c225fbbd06e8cce7996ca3b9a0223e75f47bf692286402e543
MD5 df924bafe6ad9ebe7884ec3bd8503156
BLAKE2b-256 dc30cc248bfbefd7343329ef3188d65f84b2bacffe02fa6d8bd5ff2d3d3dad29

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp38-none-win32.whl.

File metadata

  • Download URL: dolma-0.9.4-cp38-none-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dolma-0.9.4-cp38-none-win32.whl
Algorithm Hash digest
SHA256 1b3642f3652eee474aa9a62f454e3ca50296c483f7d2252800cc774b989718b1
MD5 5b84b1d5e0db064ef92d77db9dfb9602
BLAKE2b-256 23f7a428e72069bb87212cd61e4428e9ec333b25fa2c2d2bbf6905a778529ba6

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c880511ee9c19fff8c5b7cf45812eace2ad99e57a3fece396caff29b862cdf15
MD5 03cbd34b67a3cf04b2020d84a3987d8a
BLAKE2b-256 f943327b64f00a6f50be9907c1000d38dbcbfa1dbba573891243df8b6fed9128

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c34c8711dd9649c47b8df9c7b4128b9f80fa09e36166e8fbf687355b1d3bfcbb
MD5 1a95c70bb0d8a64ef057a891c3bc98dd
BLAKE2b-256 aacd1797a2586662e23e48a352ba0190745b6bc7c72c55344a776e1e3a14b9c9

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 ffaee85a3f7dc21d4de008d0754ab5b55995210b51e2dc6c1e980df8f4ae5c8e
MD5 89ac7061ec79c899c6be38512e4077e3
BLAKE2b-256 02db4c979cba7b18747e1232b1f0518f0890c374218c647027ac91eed06baa83

See more details on using hashes here.

File details

Details for the file dolma-0.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dolma-0.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 17d4c0a17675a4a5e851dbb9b06ff375969d10b7360a02d69a40b085b3366106
MD5 c6e3e0ad4d6b49f89f675db00feb07ec
BLAKE2b-256 263d1c1d988d26b3443a932a1080127ea9deb7e97fbe1aa5de5b49d05a3f1d3b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page