Skip to main content

Data filters

Project description

Dolma's official logo. It's dolma written in yellow, round lowercase letters over a blue background.

Dolma is two things:

  1. Dolma Dataset: an open dataset of 3 trillion tokens from a diverse mix of web content, academic publications, code, books, and encyclopedic materials.
  2. Dolma Toolkit: a high-performance toolkit for curating datasets for language modeling -- this repo contains the source code for the Dolma Toolkit.

Dolma Dataset

Dolma is an open dataset of 3 trillion tokens from a diverse mix of web content, academic publications, code, books, and encyclopedic materials. It was created as a training corpus for OLMo, a language model from the Allen Institute for AI (AI2).

Dolma is available for download on the HuggingFace 🤗 Hub: huggingface.co/datasets/allenai/dolma. Dolma is licensed under ODC-BY; see our blog post for explanation.

You can also read more about Dolma in our announcement, as well as by consulting its data sheet.

Dolma Toolkit

This repository houses the Dolma Toolkit, which enables curation of large datasets for (pre)-training ML models. Its key features are:

  1. High Performance ⚡: Can process billions of documents concurrently thanks to built-in parallelism.
  2. Portability 🧳: Works on a single machine, a cluster, or cloud environment.
  3. Built-In Taggers 🏷: Includes ready-to-use taggers commonly used to curate datasets such as Gopher, C4, and OpenWebText.
  4. Fast Deduplication 🗑: Speedy document deduplication using a Rust Bloom filter.
  5. Extensibility 🧩 & Cloud Support ☁: Supports custom taggers and AWS S3-compatible locations.

To install, simply type pip install dolma in your terminal.

To learn more about how to use the Dolma Toolkit, please visit the documentation.

Citation

If you use the Dolma dataset or toolkit, please cite the following items:

@article{dolma,
  title = {{Dolma: An Open Corpus of Three Trillion Tokens for Language Model Pretraining Research}},
  author={Luca Soldaini and Rodney Kinney and Akshita Bhagia and Dustin Schwenk and David Atkinson and Russell Authur and Ben Bogin and Khyathi Chandu and Jennifer Dumas and Yanai Elazar and Valentin Hofmann and Ananya Harsh Jha and Sachin Kumar and Li Lucy and Xinxi Lyu and Nathan Lambert and Ian Magnusson and Jacob Morrison and Niklas Muennighoff and Aakanksha Naik and Crystal Nam and Matthew E. Peters and Abhilasha Ravichander and Kyle Richardson and Zejiang Shen and Emma Strubell and Nishant Subramani and Oyvind Tafjord and Pete Walsh and Luke Zettlemoyer and Noah A. Smith and Hannaneh Hajishirzi and Iz Beltagy and Dirk Groeneveld and Jesse Dodge and Kyle Lo},
  year={2024},
  journal={arXiv preprint},
  url={https://arxiv.org/abs/2402.00159}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dolma-1.0.10.tar.gz (16.8 MB view details)

Uploaded Source

Built Distributions

dolma-1.0.10-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

dolma-1.0.10-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARMv7l

dolma-1.0.10-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

dolma-1.0.10-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

dolma-1.0.10-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARMv7l

dolma-1.0.10-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

dolma-1.0.10-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl (8.3 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

dolma-1.0.10-pp38-pypy38_pp73-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARMv7l

dolma-1.0.10-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

dolma-1.0.10-cp312-none-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

dolma-1.0.10-cp312-none-win32.whl (5.8 MB view details)

Uploaded CPython 3.12 Windows x86

dolma-1.0.10-cp312-cp312-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

dolma-1.0.10-cp312-cp312-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARMv7l

dolma-1.0.10-cp312-cp312-manylinux_2_28_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

dolma-1.0.10-cp312-cp312-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

dolma-1.0.10-cp312-cp312-macosx_10_12_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

dolma-1.0.10-cp311-none-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

dolma-1.0.10-cp311-none-win32.whl (5.8 MB view details)

Uploaded CPython 3.11 Windows x86

dolma-1.0.10-cp311-cp311-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

dolma-1.0.10-cp311-cp311-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARMv7l

dolma-1.0.10-cp311-cp311-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

dolma-1.0.10-cp311-cp311-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

dolma-1.0.10-cp311-cp311-macosx_10_12_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

dolma-1.0.10-cp310-none-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

dolma-1.0.10-cp310-none-win32.whl (5.8 MB view details)

Uploaded CPython 3.10 Windows x86

dolma-1.0.10-cp310-cp310-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

dolma-1.0.10-cp310-cp310-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARMv7l

dolma-1.0.10-cp310-cp310-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

dolma-1.0.10-cp310-cp310-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

dolma-1.0.10-cp310-cp310-macosx_10_12_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

dolma-1.0.10-cp39-none-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

dolma-1.0.10-cp39-none-win32.whl (5.8 MB view details)

Uploaded CPython 3.9 Windows x86

dolma-1.0.10-cp39-cp39-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

dolma-1.0.10-cp39-cp39-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARMv7l

dolma-1.0.10-cp39-cp39-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

dolma-1.0.10-cp39-cp39-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

dolma-1.0.10-cp39-cp39-macosx_10_12_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

dolma-1.0.10-cp38-none-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

dolma-1.0.10-cp38-none-win32.whl (5.8 MB view details)

Uploaded CPython 3.8 Windows x86

dolma-1.0.10-cp38-cp38-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

dolma-1.0.10-cp38-cp38-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARMv7l

dolma-1.0.10-cp38-cp38-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

File details

Details for the file dolma-1.0.10.tar.gz.

File metadata

  • Download URL: dolma-1.0.10.tar.gz
  • Upload date:
  • Size: 16.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.10.tar.gz
Algorithm Hash digest
SHA256 7411ac7ced78bcff49851525e6e3b00f4b13e4d8f83afbfb3d435a84538e659d
MD5 fe03b46d8b467edc54722465917ab0e0
BLAKE2b-256 6d0bbef3668cc52d548e72765ea58292d4457e2b1d73b9be0c93fd28bc8147a5

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e7fb9bb7eb65bae99b25c4d6feff9dc252edd1de5a9a2edf77cecdf69a5fa542
MD5 ab170e3b4f8f2243f26cd7a9ee8d04f3
BLAKE2b-256 90b0350601a6e09901aa98893b6d6e83dce790fd0b0d5933267a885ddac6bbf0

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 6df91e7c50fb3e1fd1f4c7a42e1f5a5f2dc5f29f294a2437eb7868a202b40e57
MD5 3b1d0c1293e058a35f30400fd089f70b
BLAKE2b-256 7cc62a3efb85ff8978518760cb0bba5b71de1cf4576b4e27f191663c7fcbeace

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 22a5751ad178b3e6fc80e3bd947b1d5bbad8b41ea420336ace8c749eae21199f
MD5 fc32da1ad0e00eaa22ee9d28cc4337c6
BLAKE2b-256 4731bd8d0640191396977bbcce1d1a000f896ddc638c976967a44a2b3aa687a0

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4e0d2a663a92a82349c8e4b842bf35fd7bc14a658edfba976bb63c289a0ddca4
MD5 c414cc3f1ecdfad89430cc4925fdb4c7
BLAKE2b-256 6397282b98c7fe92e610e819b95d8734995fadbbaf71e3f199f1241a0f38c84b

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 a22cf8cf19c48dca400f8a183823fa55d59115839cf12bd7fa6a48b158701e7b
MD5 5a977c7498810f002b7688bde4187ea2
BLAKE2b-256 8fb945cdaeb9c509990b185ec96c0ed3f40aa6b2bd4259e456c83401ff180aab

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a68b76facd7d7053b2205e989cc6c38d6c81caaaaa98b407ffe58a509d2e66cd
MD5 d20183dc60281c66e14dfc0e1d008605
BLAKE2b-256 e4d034eb909f33e2371f446e88298db601b331bf0b89474d1608f77196bdc433

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ac29c5eabb260de20d403274169e2737b3176300b43976c8ded1a276c03a2f43
MD5 7cc4110a112e69e8289fc5e0cc38be64
BLAKE2b-256 4193f9f2ef157dffbfdc35f24cdec68da804ac7f460d6c7eeadccfbeada8ba98

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-pp38-pypy38_pp73-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-pp38-pypy38_pp73-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 329519f14f9658d1d3de662db753e10809951bc3129b453743e3009f1ed9ba95
MD5 2b558b64f1232270eaf274c20c56a88d
BLAKE2b-256 795bc0a59337244a09fab9b7638d23f036692dbaaee0aecfb4ce22c94d53c88a

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5da01969c56c342b3cace8b7b373444148b6db224048150ee4230ce5f92f9846
MD5 b335d907b2bac9815772561c6bdc31d0
BLAKE2b-256 c66bb637efce059ec99a74562906f067b0d037ae0f16914ec5e96aeb98f4c919

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 dc0d70cbd3d79ca4e88943b124d3fe27c7c834ddc6172748c762a6749434a1bd
MD5 175d31db709ed250bf9ad854d5b40266
BLAKE2b-256 49fa4e9298cf930a604ca484fa2a39cc4b5af0575d486fda319162b516ecd587

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp312-none-win32.whl.

File metadata

  • Download URL: dolma-1.0.10-cp312-none-win32.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.10-cp312-none-win32.whl
Algorithm Hash digest
SHA256 4da9e0b6607b58cabd47d1cd46be6819b4ce9ad4add1e3171185cf6e84a32a8d
MD5 a2adc39265c7a6db0086c4f8b2b52198
BLAKE2b-256 a9fbda3b424d2c33ede60c255a3e23ad5379e5ab0dde62a336f555840b1d7d6b

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d0b1092cedad54b37b3c4cb6074277211c3d6df88c64cb6b8f3b10af66b7133d
MD5 d086bd6cf5d1cac90064f5b76e07a21b
BLAKE2b-256 2a06a47e877cb2df38d2d96420cd5acffc045e37166c900b0f504da535ab2b75

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp312-cp312-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp312-cp312-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 d3c9b75b2f7153db5f6dffb14a373e1de42d64111c1e2bd5c58ea8730692ff75
MD5 3084082bb0639e342b77fe5434e1c1df
BLAKE2b-256 f17a6e90fb0824ee8ebd96ea61af205e7c67dc16bdff64d4d1e3583939907dc4

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b6c7f344aea17e09e6425e30be44c4a04732b9995fe144ef36cb667a17718516
MD5 a6caa846b9e57043888b799177f9e758
BLAKE2b-256 8493184ae3b6a8fa0cacf3c7b3dbe19868237847dae4634bb381bb507e775cec

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0f8cf0f67fcb0868d6f9013d74ab2e588c544d19f231869e3af31666ceb98749
MD5 81b1ff81b537157c802b3f9faac88e8d
BLAKE2b-256 4436609d693f2230f116323c1cd2d53e77923fae529ef06181ce3b0a8d2cfc84

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e15f5cea6686ef27ec14721bb4ad21b952a6bbf860fb8d32dc366dad9e56009b
MD5 4b758b01d87a91169b5e9bc808a16d10
BLAKE2b-256 14c591ede88e2ca9907b0b0e91da6c29e06d7fbfef0aa1c681f0e6ded048c6f2

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 f11f7dc2afd107716711b222c041fa388195e137152a9cc39d939ead6359ff1e
MD5 e8c805ad25d2aaae8a971a417f501a41
BLAKE2b-256 e36d2fb24dbc795415d299de9f8a21f7c58bc94d91d71dd3f86ddcdb21d1a56f

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp311-none-win32.whl.

File metadata

  • Download URL: dolma-1.0.10-cp311-none-win32.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.10-cp311-none-win32.whl
Algorithm Hash digest
SHA256 626724f0d1269460b774a71c0fa5102177acea3a560e1e951337c3d8e3bbfbe9
MD5 e98d5ae65952bf3439b42ce11a38badc
BLAKE2b-256 14d7cdc21fcd9d01d3a404ee11a94d25d4317fa0adf6c9b6e5d3966fd8dca3b2

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 95e71260cc5191e56baa7361ac9aab07389b50ff2f4c7bc6eebe33c2ab2d8ee4
MD5 2de70fb35e2de60a7d3eaad77463d9ca
BLAKE2b-256 74b8fdb901582f17ae542750590a959dd4ea830698093fa63dcd71b23de21ca1

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp311-cp311-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp311-cp311-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 feb78b926fa3111141b9c4553816434b617840431530c2e7f23645feed454c19
MD5 f4291b42c3f4ab725fff2c38c002bfb0
BLAKE2b-256 60ac567c7b58c21ca2d194aa74acacfb7b0fab7ec121e4d534c34e20c295c80f

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5183a6802f56a60d6af7339ebb1d1049d962cb2e27b017c1221460cf05836b18
MD5 89e2f60678fc9d2cf49e1eb2a510c434
BLAKE2b-256 fe6328e239a6da02d1e34eabbf2b4bf9d1d446228f353d83417f7aa579bc37db

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d9781278ce9b31547577013149fa49ec6d862a1cf4283e0a94f85f93771012a
MD5 06f66421fb7716f04ee6f449e5eea829
BLAKE2b-256 95489d320ea909cee67fdbe8ec95314e7df31c1df8b233b61e6fdb9e7674212d

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 04439337a5a3480dd77c986a17bb0ed1620f5bab0115e22ed08ad4911d709758
MD5 11e1abd1a35c9f0fadab05769bd57942
BLAKE2b-256 aa19251f54fd2af8c0ecaf46169f61a55d870b7ca7cb0c54ab79163751a35066

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 06a121e77d4e27efc8843e41b8dda62afc8fb64ea95d621bd731d5c0f9ebc44c
MD5 b41f80aa76cab23979b5cb9b12d38dcf
BLAKE2b-256 184b17ffc41603fc6c5fff86367e10da14877d2e90d3e8e349515e1ea91aa08f

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp310-none-win32.whl.

File metadata

  • Download URL: dolma-1.0.10-cp310-none-win32.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.10-cp310-none-win32.whl
Algorithm Hash digest
SHA256 73dee5feca59ec4bfc5826b715cd7e2b5fa36ddcd6c9b5a3668df18b65abbd6d
MD5 50802205f73e42455261ca35ba84c7af
BLAKE2b-256 fef5fec5093763bf677773a31c6df0fccf85702a52c75706b7190fdbfec06a7e

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9c0462b68b8ffd92f7adbcd5694cf80a9bda4525e449ec70b84c4fda9853be10
MD5 9f2706d0bbf24df4bb20ad117592123b
BLAKE2b-256 eb0243b08106f7083a63f6e9e1184756bebf89ddd7e10897f29d9ff8fb311528

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp310-cp310-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp310-cp310-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 6be4026343f6c92eba99cf122f490b727e05d2cc77b59ebb40bc28882c592629
MD5 460f6d775d92bfb9f412a2289336db55
BLAKE2b-256 03c06328582ee8fe3583594cfe6a5d8d1e71ed2d21e385e175207c547c3a369f

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 61b05ab087fa93935893235b66ee74b078016ed464d3c749b5d9811038757f6e
MD5 4be54780d101d62fc2625383ac95991e
BLAKE2b-256 24f9f8819f6048489c2f73492483781543691ef679e7d757ca641c9b527e8895

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f2fb9f3a5b9b467403fde140444504bc0940b8944c0f92ca608ab5fb8e613ed
MD5 8e1aad19022d4d8c710959a56a1def41
BLAKE2b-256 c1eb63fcd9d30c2e3d9d3e96323a1bd8cc851f6088e15030d9ef19d28b4e4381

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 079e5bbf4a5bf6f9da1008e85f9fcc1a834591a7c6909fb585b0cb8f8d109a04
MD5 25f320a8369c49a90539251e4aaa79c8
BLAKE2b-256 530e0b6c5819100dcc7ab17a0e730ecec184b31ace40f279e2aa65816a10d7d9

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp39-none-win_amd64.whl.

File metadata

  • Download URL: dolma-1.0.10-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.10-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 5a76a686afca968e2fa1b248c7172fe6772c0879c35f609d0b9ca1cc5eb6c4e8
MD5 75387b158f009f556bf2540adc6a3408
BLAKE2b-256 61d1e555da85592946b007ff337bf329ed770baf6c1c19ecad5c4f5624ae06b4

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp39-none-win32.whl.

File metadata

  • Download URL: dolma-1.0.10-cp39-none-win32.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.10-cp39-none-win32.whl
Algorithm Hash digest
SHA256 4fa3947073ab9cf6854ed602b59b4d7b48d779b14be55f2b86c1b6044785426f
MD5 5402e368c6db0d148a1da8d5932fbdab
BLAKE2b-256 583b361629b63d0e69ab49bf996f94c6512bb1007a3b079587d4123444ec867f

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f3961cd420bcaa330d9d8e6d8262d7aaf0ab96a13c151a6c503bf5f1b39dfe01
MD5 0a39b9cb7e4bbfe52d4744052ca9904f
BLAKE2b-256 766eb3a5ed9357e0ebc861803b74e2791e1030e63064d8d0ebd2a7b10423be6b

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp39-cp39-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp39-cp39-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 50216e15d3546f08d1e19ea129f838356e534b2ffb482b7152d81deb23e6fea5
MD5 77e007eda3e797940d47cb0df5702114
BLAKE2b-256 380d007da15aab3ca6a163c26fc5cb9d5fb9d729a6771c79787250486a14d053

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3f280b5ef53a206437a48dcfb1d918b96230ce8563b4f26f4439b7cffcc7aa52
MD5 065b452e649a3c32580e895bb68f6540
BLAKE2b-256 ec10d346a1f0d875b1524a59e95e9bec02de34d1b54ed667f7bac897a655b1d5

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c5b498d9c73368047aa3751eadfb213c90656a128333b487c1cae02d452667e2
MD5 da0c7e87059b6440684fa65af9d8a534
BLAKE2b-256 3e6af2fc87b8ed7d49937bc50f0dffdd82c416c01a2d6e9f8f19b23523812036

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f21da72821d61c959ae3fcfba382f89d9237cb44188c20b86d9513be9ec27aed
MD5 bac669854bf21150d9ca0f3086a2d58b
BLAKE2b-256 600fec77d4b4d0e549b0c83248f589a5f861b3ba3597eb0207a4bfbc54ba6573

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp38-none-win_amd64.whl.

File metadata

  • Download URL: dolma-1.0.10-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.10-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 652b537b9707c4c92e27cdbd344dbfed49e4237729ce58aad7a96d72f735f59d
MD5 ae89bb7bbb06da51513d63d21c73714e
BLAKE2b-256 337cf4cefe5fffec8bbe81b9f34b16e512258c3e658905bcc1dc7cf74eddf7d7

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp38-none-win32.whl.

File metadata

  • Download URL: dolma-1.0.10-cp38-none-win32.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.10-cp38-none-win32.whl
Algorithm Hash digest
SHA256 7cc533e6495e492513d15a8575e0f21d9779d1968a4ec373dcac1a91895c2e59
MD5 748cfb8a5b21f750c0a7edccf03b4e79
BLAKE2b-256 e8f52cc3578c1227524451b28cb445d5b3871ed470fad6434733945a89237a2d

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 256f9cf7541e879a5a87379975bfb1e6943bf625ddeccbc8d3a1dc234867136e
MD5 17da33e9c1a9ceeae6e72b88d916f3bd
BLAKE2b-256 1be2905b94b2aa8e341817b469c3a26d1ffe977737a088d443ec93c669a36438

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp38-cp38-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp38-cp38-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 81e37447fb1b1fbf3e4eef7c269f4489ba2e8e3cd70c731bafd626a81e87fb64
MD5 60b1ac2edd3b6607d4432d6eadcbbf07
BLAKE2b-256 23ef77eeeb25e1f896a30cca3e472394a4b565eb485d0fac2e706587ec14fcfd

See more details on using hashes here.

File details

Details for the file dolma-1.0.10-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.10-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c4661219676ba688f6b2807d1f261e71a880e03d355849d635bdeecb7832b3cc
MD5 775a55d9339eed26ef6a5d219712a121
BLAKE2b-256 3f673ae9091b8a6c8201896ff8c37eb14322acd450bdc649cdcce3021511a1ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page