Skip to main content

Data filters

Project description

Dolma's official logo. It's dolma written in yellow, round lowercase letters over a blue background.

Dolma is two things:

  1. Dolma Dataset: an open dataset of 3 trillion tokens from a diverse mix of web content, academic publications, code, books, and encyclopedic materials.
  2. Dolma Toolkit: a high-performance toolkit for curating datasets for language modeling -- this repo contains the source code for the Dolma Toolkit.

Dolma Dataset

Dolma is an open dataset of 3 trillion tokens from a diverse mix of web content, academic publications, code, books, and encyclopedic materials. It was created as a training corpus for OLMo, a language model from the Allen Institute for AI (AI2).

Dolma is available for download on the HuggingFace 🤗 Hub: huggingface.co/datasets/allenai/dolma. Dolma is licensed under ODC-BY; see our blog post for explanation.

You can also read more about Dolma in our announcement, as well as by consulting its data sheet.

Dolma Toolkit

This repository houses the Dolma Toolkit, which enables curation of large datasets for (pre)-training ML models. Its key features are:

  1. High Performance ⚡: Can process billions of documents concurrently thanks to built-in parallelism.
  2. Portability 🧳: Works on a single machine, a cluster, or cloud environment.
  3. Built-In Taggers 🏷: Includes ready-to-use taggers commonly used to curate datasets such as Gopher, C4, and OpenWebText.
  4. Fast Deduplication 🗑: Speedy document deduplication using a Rust Bloom filter.
  5. Extensibility 🧩 & Cloud Support ☁: Supports custom taggers and AWS S3-compatible locations.

To install, simply type pip install dolma in your terminal.

To learn more about how to use the Dolma Toolkit, please visit the documentation.

Citation

If you use the Dolma dataset or toolkit, please cite the following items:

@article{dolma,
  title = {{Dolma: An Open Corpus of Three Trillion Tokens for Language Model Pretraining Research}},
  author={Luca Soldaini and Rodney Kinney and Akshita Bhagia and Dustin Schwenk and David Atkinson and Russell Authur and Ben Bogin and Khyathi Chandu and Jennifer Dumas and Yanai Elazar and Valentin Hofmann and Ananya Harsh Jha and Sachin Kumar and Li Lucy and Xinxi Lyu and Nathan Lambert and Ian Magnusson and Jacob Morrison and Niklas Muennighoff and Aakanksha Naik and Crystal Nam and Matthew E. Peters and Abhilasha Ravichander and Kyle Richardson and Zejiang Shen and Emma Strubell and Nishant Subramani and Oyvind Tafjord and Pete Walsh and Luke Zettlemoyer and Noah A. Smith and Hannaneh Hajishirzi and Iz Beltagy and Dirk Groeneveld and Jesse Dodge and Kyle Lo},
  year={2024},
  journal={arXiv preprint},
  url={https://arxiv.org/abs/2402.00159}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dolma-1.0.8.tar.gz (16.8 MB view details)

Uploaded Source

Built Distributions

dolma-1.0.8-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

dolma-1.0.8-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARMv7l

dolma-1.0.8-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

dolma-1.0.8-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

dolma-1.0.8-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARMv7l

dolma-1.0.8-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

dolma-1.0.8-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

dolma-1.0.8-pp38-pypy38_pp73-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARMv7l

dolma-1.0.8-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

dolma-1.0.8-cp312-none-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

dolma-1.0.8-cp312-none-win32.whl (5.8 MB view details)

Uploaded CPython 3.12 Windows x86

dolma-1.0.8-cp312-cp312-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

dolma-1.0.8-cp312-cp312-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARMv7l

dolma-1.0.8-cp312-cp312-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

dolma-1.0.8-cp312-cp312-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

dolma-1.0.8-cp312-cp312-macosx_10_12_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

dolma-1.0.8-cp311-none-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

dolma-1.0.8-cp311-none-win32.whl (5.8 MB view details)

Uploaded CPython 3.11 Windows x86

dolma-1.0.8-cp311-cp311-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

dolma-1.0.8-cp311-cp311-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARMv7l

dolma-1.0.8-cp311-cp311-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

dolma-1.0.8-cp311-cp311-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

dolma-1.0.8-cp311-cp311-macosx_10_12_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

dolma-1.0.8-cp310-none-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

dolma-1.0.8-cp310-none-win32.whl (5.8 MB view details)

Uploaded CPython 3.10 Windows x86

dolma-1.0.8-cp310-cp310-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

dolma-1.0.8-cp310-cp310-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARMv7l

dolma-1.0.8-cp310-cp310-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

dolma-1.0.8-cp310-cp310-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

dolma-1.0.8-cp310-cp310-macosx_10_12_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

dolma-1.0.8-cp39-none-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

dolma-1.0.8-cp39-none-win32.whl (5.8 MB view details)

Uploaded CPython 3.9 Windows x86

dolma-1.0.8-cp39-cp39-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

dolma-1.0.8-cp39-cp39-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARMv7l

dolma-1.0.8-cp39-cp39-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

dolma-1.0.8-cp39-cp39-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

dolma-1.0.8-cp39-cp39-macosx_10_12_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

dolma-1.0.8-cp38-none-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

dolma-1.0.8-cp38-none-win32.whl (5.8 MB view details)

Uploaded CPython 3.8 Windows x86

dolma-1.0.8-cp38-cp38-manylinux_2_28_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

dolma-1.0.8-cp38-cp38-manylinux_2_28_armv7l.whl (7.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARMv7l

dolma-1.0.8-cp38-cp38-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

File details

Details for the file dolma-1.0.8.tar.gz.

File metadata

  • Download URL: dolma-1.0.8.tar.gz
  • Upload date:
  • Size: 16.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.8.tar.gz
Algorithm Hash digest
SHA256 b8e8db1c77c354dc687b834d92964bbe6a56062ae8adb1308391b676a84c5666
MD5 c9c2d0056df64296a71aa7c3ba1ab3e8
BLAKE2b-256 4d7e2d065012840dbe0f780f2d9a77cb00a4ae755d8f99a9ffa26bb4ffb69bcf

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4b00a8b170ba3705e54056026544b3832d8f2f3f49402c85a1128943709edb57
MD5 c8aaaa28da0b8be43f2a9048f555824f
BLAKE2b-256 15ffb6b763d4618976640c1649be7928b6520258048e099b3aa8be1352fa57c6

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 4384a28be01584c937cecc752af94e538449c484030c4fe27dc43a22fd382193
MD5 cbcc4ef2e49ecec67c8b351331597736
BLAKE2b-256 83f8ac57c4b85228067b00a86579c92fd268523113435b330366a5ba24ef1b80

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ce8ceb65f3a11965f435bb97cad4ec0279e126ebd37b1cccaca3c165b558b603
MD5 eded8cdfc420150325b8bb78e50e889a
BLAKE2b-256 dbdcfa3904c9cc5d781705dfc44aec5e0b4a1959bc392d8508341ff06eea6ee3

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 def0863485f7165b422459aa15a8b65f65475f90899820ea4e860eee7cdead47
MD5 ee4c92fc3c4c9c07ecd9475994303567
BLAKE2b-256 9a5945f2dff94c0afe3b7ee0f53ae7e89f8c63a06a733c79ec54eb59318af168

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 757193ab6537f35dc8de2fcd208dee371c2e6f4c8711766341739d01856d3060
MD5 bac576da365768f856c8c97846212b03
BLAKE2b-256 4c4b8ca0e56501c75bc66bfe760c9035638578378523264bd17d64012698d3df

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 967444c6092110077b746818bcbe69d6bd2b7425b96a4bf0bff9b29e3d9a411e
MD5 095b2570b5c478c23c2482d86e9dd753
BLAKE2b-256 7e34acd235984ba5bbe50cb47bb3f7c20f171f78adf2febcda472cce7878af02

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e69941d9f2fbcf2c1a662c2f20ef717c1c3d36aa468c3c13e531fbe61801a444
MD5 665f4984dc73f3ea764aaeda7b077275
BLAKE2b-256 6281a3bd4910c9ac5352c0f932d31b419f1c8673e1d43e474a62fc847adef5c1

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-pp38-pypy38_pp73-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-pp38-pypy38_pp73-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 d4b8f25c79bd085a4dd61a778c04325bd4d5ddfc052c335c697b848e8da61952
MD5 d8a5a8c2ebd95a1ad9d87335a750e9cd
BLAKE2b-256 52fca46390b6490858e72529e0bc556bfe35e95bfcfca715904a391924b6048d

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 008ae74cc46ce5754fc700aa734da0a2f19cd293baf32eb8d38af78e4f72e5f0
MD5 0194c1a511b0029b6e8023ccd492c38c
BLAKE2b-256 501370d2245d69ba38d409fb06239f74160f298fe122482e7906fb2dae692834

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp312-none-win_amd64.whl.

File metadata

  • Download URL: dolma-1.0.8-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.8-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 e9adcc2ff2d927e58c3f753bfc1e614e6124f46523c21b9025cf29e093dfd79b
MD5 51ce51e3ec0a85b1df45ec578614cf36
BLAKE2b-256 e06794a5bf92c7d2e8f975f2535a25e1c5dd049c537e6b34ffeffcecde0f681c

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp312-none-win32.whl.

File metadata

  • Download URL: dolma-1.0.8-cp312-none-win32.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.8-cp312-none-win32.whl
Algorithm Hash digest
SHA256 a837bae09aa7f35e5c3429d7fc262a33b6df0f0ba2307f9b5fcbf15bc213c3ce
MD5 511d00a4f33356c15e0da0670632512d
BLAKE2b-256 cd7178658c536cc4e408e8c6ccc5616fd5d13e924d9e5a003272c5d230e761d7

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bc2293f2ab15d5577b5df9c345c6fe6a862474204c0e9ea586221d10438f625a
MD5 9db6f52a54c00eb6b1e993b034a4c7c8
BLAKE2b-256 4da7c833ab1b721610eefb0ad7e5b8b9b27cf338b1e4078419a0671357e69b20

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp312-cp312-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp312-cp312-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 7bf8e5e68055bf3b4ce0ba5b7616849d37652e2fdef432b1c19cb828207e7b39
MD5 39d0c4dd7b2fa2c1f5bda97af4cd7c16
BLAKE2b-256 48e556f8822d9e1719265d0bc98f85f280d465ff67e9aa5d48c69338b1178481

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e37ff65dd1c4ca3cf3d5782e089c4465d4b066675d29bfbab3fc84f728a253c9
MD5 8b365916f5b9f12dd6c7510ada077a3f
BLAKE2b-256 04a59742ab1f84aeea676b05420cab13784d8d8666571fa328a6b70472341543

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e122957ff0ec6830448f798ae7b6bf07ee389f57a9c6f2b21d2bd5fff859414d
MD5 3cae7b993535e0e7a07b060333542f50
BLAKE2b-256 294f93f3b55860d7f147cf404ac2979a6184c8307c90c18701deaa83d1fa8367

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 90bbea2f50453766e30ea84a522cbedeabeaccc6acef7efc22b0cf2d2a2dfa49
MD5 7289d713a730f4601f147ad1d304e982
BLAKE2b-256 e581bcd0e0287511b72a6a08741aad0cbd679d7ba2a80b45a29f5a1f88bb95f9

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp311-none-win_amd64.whl.

File metadata

  • Download URL: dolma-1.0.8-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.8-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 3499f42dadb26a288b54f1ddf38205f26b45cc88cacabfe94c21ecc7e96b238d
MD5 8e324852e69ea4e4225c26c074f83853
BLAKE2b-256 19fa51bc7c34458b22a67f57cc2591e8e6fc11c8de7261f96bb870aaa5a72e3b

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp311-none-win32.whl.

File metadata

  • Download URL: dolma-1.0.8-cp311-none-win32.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.8-cp311-none-win32.whl
Algorithm Hash digest
SHA256 f4513fcf25602615cda8c21478c2fdc4c8e58184148d7db3b197f73a9eefeac2
MD5 fe7aa06cf2f528e40d29580ff862c820
BLAKE2b-256 eb6661362f5c9ce2e05203271f4ee561ee723b96a3743a3fd2ed91a1cb208dca

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4df2fc805cc95abaacfbe8079a822833eea6b5c71255179b38608772bb88a65b
MD5 911126362900a387f6255794ae97066b
BLAKE2b-256 7bb956cba2270fc32004d0c9e4f685e0bb8763564739a958accefc01e272359a

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp311-cp311-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp311-cp311-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 bf6185a1648ea85032bdd917cf4be576166a43acc30330f509998c6397560dad
MD5 a805e2f6da56b594e1f9a2787354cbed
BLAKE2b-256 2a64baae5a6a8dbcf1361d9181d7e74fa15b60ee13bdd4e3b8184dc39d255739

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 189edfaf93dd4d5f7b3e5fce60ab14e321132939be3af9ab4537d79c2f425e3b
MD5 f89ce4a73039e5a321f798864ac633f7
BLAKE2b-256 1d536bdc6a8c6ea9297b09af4826ce5100573f47819e9d578684a3778af2d518

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fbd05ae17241c739949a3c4261cf5b0b998a777208598a6cd9fbf91cfc93b749
MD5 8a09f6f7e82f37074827d7c8d59c348e
BLAKE2b-256 5657920a70b9ddc783105a5a8d0758038e7ba8ceb7f1a7e83ccfea2f0d2e3cf1

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 8ede31477d23a1a7603cb0ab7370b4d8f15f57d26007d5e0bf297cea5a479c50
MD5 6173263ed80fde4e1bbc1a0971352798
BLAKE2b-256 92afc8899aa0af3a5266372ac3fee1bde764990929bd03ef30a672b6cc4cc284

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp310-none-win_amd64.whl.

File metadata

  • Download URL: dolma-1.0.8-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.8-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 1c393987d6ef9647e8cc8fe272e4b66ea635087d2d534d7586d1a4f9980c765d
MD5 29ed19523fed448ee54235e0b4dfb34c
BLAKE2b-256 b0cb4082e34521e90fc8300f9b3facd7f9cb206f8f66232744df7888c5e7e76d

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp310-none-win32.whl.

File metadata

  • Download URL: dolma-1.0.8-cp310-none-win32.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.8-cp310-none-win32.whl
Algorithm Hash digest
SHA256 2b7f8bb9e761c493ae4eb09efee42e665fb7c07a18bb9bd79872fbb77d077c63
MD5 0c0f4a7ab1e615a532a510d710b56cbf
BLAKE2b-256 2f21d52c316921545b49ba71fa84ff74b66aeb9d6206738dbc3fee60f8502e23

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 57697e0f1ff6052eac261d3b152ed1902153f1c951b2aadc2cc2d107d4979552
MD5 b565f2cf6037970d269a9048089ada6b
BLAKE2b-256 087830cb73959f4ffece502fa141adec892443d8706e69694d36f9fb7aecd4d0

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp310-cp310-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp310-cp310-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 6add643c37635b419f10a0b0e15e7b1dd9d8dab992c262656795cd82278f826a
MD5 d57f4f6a5b02ed87fe17e2df8c8a8a34
BLAKE2b-256 db7b8efe23297ae5c9a69de42427dd13a6edda5bcbde79f6f957d42ed600b1e0

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 be80ff4582dafcb83ac643ca54e78162852c31b68269e22d592b9b5b28b092ae
MD5 086b25ed920bc0b4421f0469d469e1a8
BLAKE2b-256 bb45f3bf57c46b89d026b9450caa917e3e270edc054e65c076272fad5b165788

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9704ff76a97ef548d8ed2a907f8a66be0b984e1392579b5cf07c21aef042c869
MD5 d5f38a1fc0ce21acea6ab38245d87146
BLAKE2b-256 e13047bef3c7116025deafb0d2c9863ebc4e6d1e6740f2e67f9583e11196cbef

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 a20912cff8e32d227529a6cc299edc74a6dc6fe735b7268056babd19aa8eba0d
MD5 2b4fedc073f0263522a762f2adef3bc1
BLAKE2b-256 b6fbf5498d47eeff6105b955d718b8a12d50232e060e32334e24866892306c25

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp39-none-win_amd64.whl.

File metadata

  • Download URL: dolma-1.0.8-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.8-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 9046792ab8c63c06eb79ddb2f7d6ab5903a67be394baecfa1c03d9b88ba467a0
MD5 46acbec7e6725a5fcf17833ee013e2dd
BLAKE2b-256 365f2e3e5afc496e100a218ea5d9e5d8d80ee551a3344f3f5bdb8b1a5bac2db0

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp39-none-win32.whl.

File metadata

  • Download URL: dolma-1.0.8-cp39-none-win32.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.8-cp39-none-win32.whl
Algorithm Hash digest
SHA256 6ce237cef859c5e7dc8889510f001a67ce081ba5735ba5231aca6f1eb9a62b96
MD5 1a389333b740e77702e1725272e2fc09
BLAKE2b-256 b387d55e7108e150917b14f3aa17a04ccd92bdf165d8f32de703635c4a562f2c

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5937bbc08dbefa51ccae8253285bcfedbe0ec687f245264e3d5037ebd17b86bd
MD5 724aba01b956aca482e46f6c9d5aaa3f
BLAKE2b-256 49602e28c5b15292996ce517411c0ffead7e2465bf5426c95efae6027b533455

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp39-cp39-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp39-cp39-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 3a96db1530ee0d44670699176dbbf780d28d5a3457b8d405d28f8ba3bc961b6d
MD5 5241972470801ef75132d578e6c9629c
BLAKE2b-256 72d0687cedd23b62fcd9ed73b63cb1fa661111c83ae915111d58d403aaa00b16

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7cd16a49f05e6dbb47e57743dd03a7e5a17a22a0c3a2bea801626881ad53ed5e
MD5 166a35aa4a5585daa46cac575a8ba0e6
BLAKE2b-256 4d65079dc6614ee4886bcb785b71ca1c292d5057017ff9cbfac2d56eb96901d2

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 16a69ab2101174dd6349c36b5ef2631fa12989e1588bf86df2180877c61f14d5
MD5 204f4211e62aa77888b9af212bf2c409
BLAKE2b-256 4f023e608a3b4a1303076106dd832d4bd989935d3d52210b4a6d76735012a13d

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d9bf9a1cbcb2c4c6b90bc5b6cbbf2fc46006e921017514c36a098ce7c47da1e9
MD5 e89c95e8dd417346b8f624c8dbb2c784
BLAKE2b-256 851f90b6b6fdd5580e55cfe680a7dfbaf7093c533a036ea5e57cafc7f5a3b919

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp38-none-win_amd64.whl.

File metadata

  • Download URL: dolma-1.0.8-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.8-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 fb930f827d1be177c67a62a4659d9ba73d9dacfae19c330845068574bb88aaf1
MD5 f02405940056c244dbe9dca3f2584c28
BLAKE2b-256 cb0ee3cae03b3b18fd6aa04001ee379ecf7c109c6b76eabf9c1ae1533d635b68

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp38-none-win32.whl.

File metadata

  • Download URL: dolma-1.0.8-cp38-none-win32.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for dolma-1.0.8-cp38-none-win32.whl
Algorithm Hash digest
SHA256 2716d4c5a110feb4cfade1fa066ec61c75f772c663adff6840d4bce13404b8a2
MD5 c40a9c2a624dccf17b0f219a44546960
BLAKE2b-256 ce10ed3f81fc8bee919517f639c32465119615e4a465ec9a17f93e2bfc225b96

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 eec807f6c929ba15564863d6e87c59abd84617324a3588c283968af922b2361c
MD5 1ccaf2d26d99b0848ccbb7d71c7c3c0a
BLAKE2b-256 45ccb827b185833bc2c5ee91e13442d38cc01f1aa2ddc73913ea513c136f6196

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp38-cp38-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp38-cp38-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 4ad36aee7028974628e5308c9b6885278015d90359c6e933d46f450ec96d2884
MD5 6293e4e4c04447dad9be4e230d974185
BLAKE2b-256 a9c162540a4618dcf94d62255ed0d44d67c45746f5a3ee7513f654ca4b40cf54

See more details on using hashes here.

File details

Details for the file dolma-1.0.8-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for dolma-1.0.8-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 926aefaa9eff69224ff8d3b9df2170011a1080c246580fb303fcf9392106184e
MD5 900e3287da654af0078e4318f6fdf7cb
BLAKE2b-256 1f693908f6ad4ed16683cb03a169a4045438aaf2c7df1e4251221e7eb634acce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page