Skip to main content

An end-to-end single-cell multimodal analysis model with deep parameter inference.

Project description

Modeling and analyzing single-cell multimodal data with deep parametric inference

The proliferation of single-cell multimodal sequencing technologies has enabled us to understand cellular heterogeneity with multiple views, providing novel and actionable biological insights into the disease-driving mechanisms. Here, we propose a comprehensive end-to-end single-cell multimodal data analysis framework named Deep Parametric Inference (DPI). The python packages, datasets and user-friendly manuals of DPI are freely available at https://github.com/studentiz/dpi.

The dpi framework works with scanpy and supports the following single-cell multimodal analyses

  • Multimodal data integration
  • Multimodal data noise reduction
  • Cell clustering and visualization
  • Reference and query cell types
  • Cell state vector field visualization

Pip install

pip install dpi-sc

Datasets

The dataset participating in "Single-cell multimodal modeling with deep parametric inference" can be downloaded at DPI data warehouse

Tutorial

We use pbmc1k data set to demonstrate the process of DPI analysis of single cell multimodal data.

Import dependencies

import scanpy as sc
import dpi

Retina image output (optional)

%matplotlib inline
%config InlineBackend.figure_format = 'retina'

Load dataset

# The dataset can be downloaded from [Datasets] above.
sc_data = sc.read_h5ad("PBMC_COVID19_Healthy_Annotated.h5ad")

Set marker collection

rna_markers = ["CCR7", "CD19", "CD3E", "CD4"]
protein_markers = ["AB_CCR7", "AB_CD19", "AB_CD3", "AB_CD4"]

Preprocessing

dpi.preprocessing(sc_data)
dpi.normalize(sc_data, protein_expression_obsm_key="protein_expression")
sc_data.var_names_make_unique()
sc.pp.highly_variable_genes(
    sc_data,
    n_top_genes=3000,
    flavor="seurat_v3",
    subset=False
)
dpi.add_genes(sc_data, rna_markers)
sc_data = sc_data[:,sc_data.var["highly_variable"]]
dpi.scale(sc_data)

Prepare and run DPI model

Configure DPI model parameters

dpi.build_mix_model(sc_data, net_dim_rna_list=[512, 128], net_dim_pro_list=[128], net_dim_rna_mean=128, net_dim_pro_mean=128, net_dim_mix=128, lr=0.0001)

Run DPI model

dpi.fit(sc_data)

Visualize the loss

dpi.loss_plot(sc_data)

Save DPI model (optional)

dpi.saveobj2file(sc_data, "COVID19PBMC_healthy.dpi")
#sc_data = dpi.loadobj("COVID19PBMC_healthy.dpi")

Visualize the latent space

Extract latent spaces

dpi.get_spaces(sc_data)

Visualize the spaces

dpi.space_plot(sc_data, "mm_parameter_space", color="green", kde=True, bins=30)
dpi.space_plot(sc_data, "rna_latent_space", color="orange", kde=True, bins=30)
dpi.space_plot(sc_data, "pro_latent_space", color="blue", kde=True, bins=30)

Preparation for downstream analysis

Extract features

dpi.get_features(sc_data)

Get denoised datas

dpi.get_denoised_rna(sc_data)
dpi.get_denoised_pro(sc_data)

Cell clustering and visualization

Cell clustering

sc.pp.neighbors(sc_data, use_rep="mix_features")
dpi.umap_run(sc_data, min_dist=0.4)
sc.tl.leiden(sc_data)

Cell cluster visualization

sc.pl.umap(sc_data, color="leiden")

Observe multimodal data markers

RNA markers

dpi.umap_plot(sc_data, featuretype="rna", color=rna_markers, ncols=2)
dpi.umap_plot(sc_data, featuretype="rna", color=rna_markers, ncols=2, layer="rna_denoised")

Protein markers

dpi.umap_plot(sc_data, featuretype="protein", color=protein_markers, ncols=2)
dpi.umap_plot(sc_data, featuretype="protein", color=protein_markers, ncols=2, layer="pro_denoised")

Reference and query

Reference objects need to be pre-set with cell labels.

sc.pl.umap(sc_data, color="initial_clustering", frameon=False, title="PBMC COVID19 Healthy labels")

Demonstrate reference and query capabilities with unannotated asymptomatic COVID-19 PBMCs.

# The dataset can be downloaded from [Datasets] above.
filepath = "/home/hh/bigdata/hh/DPI/COVID-19/COVID19_Asymptomatic.h5ad"
sc_data_COVID19_Asymptomatic = sc.read_h5ad(filepath)

Unannotated data also needs to be normalized.

dpi.normalize(sc_data_COVID19_Asymptomatic, protein_expression_obsm_key="protein_expression")

Referenced and queried objects require alignment features.

sc_data_COVID19_Asymptomatic = sc_data_COVID19_Asymptomatic[:,sc_data.var.index]

Unannotated objects need to be normalized again with pretrained objects.

sc_data_COVID19_Asymptomatic.obsm["rna_nor"] = sc_data.mm_rna.transform(sc_data_COVID19_Asymptomatic.X).astype("float16")
sc_data_COVID19_Asymptomatic.obsm["pro_nor"] = sc_data.mm_pro.transform(sc_data_COVID19_Asymptomatic.obsm["pro_nor"]).astype("float16")

Run the automated annotation function.

dpi.annotate(sc_data, ref_labelname="initial_clustering", sc_data_COVID19_Asymptomatic)

Visualize the annotated object.

sc.pl.umap(sc_data_COVID19_Asymptomatic, color="labels", frameon=False, title="PBMC COVID19 Asymptomatic Annotated")

Cell state vector field

Simulates the cellular state when the CCR7 protein is amplified 2-fold.

dpi.cell_state_vector_field(sc_data, feature="AB_CCR7", amplitude=2, obs="initial_clustering", featuretype="protein")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dpi-sc-1.1.6.tar.gz (16.4 kB view details)

Uploaded Source

Built Distribution

dpi_sc-1.1.6-py3-none-any.whl (22.1 kB view details)

Uploaded Python 3

File details

Details for the file dpi-sc-1.1.6.tar.gz.

File metadata

  • Download URL: dpi-sc-1.1.6.tar.gz
  • Upload date:
  • Size: 16.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.12

File hashes

Hashes for dpi-sc-1.1.6.tar.gz
Algorithm Hash digest
SHA256 4f8180b84afdcdafc742a869fce3bc167135fbbfc5f9ac6df71cf6ad153884b9
MD5 5849a09f5cede9a0081c46a36e7f334c
BLAKE2b-256 600bd821941b45d9119098b1e63173d176fffceaf5884379dd6465f4a098a44d

See more details on using hashes here.

File details

Details for the file dpi_sc-1.1.6-py3-none-any.whl.

File metadata

  • Download URL: dpi_sc-1.1.6-py3-none-any.whl
  • Upload date:
  • Size: 22.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.12

File hashes

Hashes for dpi_sc-1.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 1053dffee6251d061264b7a91cf54f234b2e93141c391727f54a843ce48e66fc
MD5 838575e6d56d643c98d50bb52da87c94
BLAKE2b-256 b334e12ea1f0294465868dfc0294d822007c2d37b9d34ef83dbc249893811945

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page