Skip to main content

Dirichlet process mixture model in Python with scikit-learn like API.

Project description

image0

dpmmlearn is a algorithms for Dirichlet Process Mixture Model.

Dependencies

The required dependencies to use dpmmlearn are,

  • scikit-learn

  • numpy

  • scipy

You also need matplotlib, seaborn to run the demo and pytest to run the tests.

install

pip install dpmmlearn

USAGE

We have posted a usage example in the github’s demo folder.

License

This code is licensed under MIT License.

Test

python setup.py test

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dpmmlearn-0.0.1b1.tar.gz (14.0 kB view details)

Uploaded Source

Built Distribution

dpmmlearn-0.0.1b1-py3-none-any.whl (14.8 kB view details)

Uploaded Python 3

File details

Details for the file dpmmlearn-0.0.1b1.tar.gz.

File metadata

  • Download URL: dpmmlearn-0.0.1b1.tar.gz
  • Upload date:
  • Size: 14.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for dpmmlearn-0.0.1b1.tar.gz
Algorithm Hash digest
SHA256 ac1b5c71140c765728394c0b2c9c69699e7c817961a21152690abbdb6c97869c
MD5 a3f1c0c9398dd9d11afd0cc7c8e53e85
BLAKE2b-256 b22cef85711db649e1afb7580b47a66b8810aa8dbef914fca76ba189df7f1b40

See more details on using hashes here.

File details

Details for the file dpmmlearn-0.0.1b1-py3-none-any.whl.

File metadata

  • Download URL: dpmmlearn-0.0.1b1-py3-none-any.whl
  • Upload date:
  • Size: 14.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for dpmmlearn-0.0.1b1-py3-none-any.whl
Algorithm Hash digest
SHA256 3a862b70139e2c1d9f9eb2f83ce0f701b59db2808f5fe3b2ebdba8e3630e004d
MD5 c230c77cdd7c447a09d21e3a677814df
BLAKE2b-256 53a73a4c8ef6783228475afebd345d3e42840a4523bbca8aa4174794ed7aa83d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page