Dirichlet process mixture model in Python with scikit-learn like API.
Project description
dpmmlearn is a algorithms for Dirichlet Process Mixture Model.
Dependencies
The required dependencies to use dpmmlearn are,
scikit-learn
numpy
scipy
You also need matplotlib, seaborn to run the demo and pytest to run the tests.
install
pip install dpmmlearn
USAGE
We have posted a usage example in the github’s demo folder.
License
This code is licensed under MIT License.
Test
python setup.py test
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dpmmlearn-0.0.1b1.tar.gz
(14.0 kB
view details)
Built Distribution
File details
Details for the file dpmmlearn-0.0.1b1.tar.gz
.
File metadata
- Download URL: dpmmlearn-0.0.1b1.tar.gz
- Upload date:
- Size: 14.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac1b5c71140c765728394c0b2c9c69699e7c817961a21152690abbdb6c97869c |
|
MD5 | a3f1c0c9398dd9d11afd0cc7c8e53e85 |
|
BLAKE2b-256 | b22cef85711db649e1afb7580b47a66b8810aa8dbef914fca76ba189df7f1b40 |
File details
Details for the file dpmmlearn-0.0.1b1-py3-none-any.whl
.
File metadata
- Download URL: dpmmlearn-0.0.1b1-py3-none-any.whl
- Upload date:
- Size: 14.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a862b70139e2c1d9f9eb2f83ce0f701b59db2808f5fe3b2ebdba8e3630e004d |
|
MD5 | c230c77cdd7c447a09d21e3a677814df |
|
BLAKE2b-256 | 53a73a4c8ef6783228475afebd345d3e42840a4523bbca8aa4174794ed7aa83d |