Skip to main content

DSNE algorithms

Project description

DSNE

Visualizing Data Velocity using DSNE. Preprint. Python library containing DSNE algorithms. png

Installation

Requirements

  • cblas or openblas. Tested version is v0.2.5 and v0.2.6 (not necessary for OSX).

From Github:

git clone https://github.com/songtingstone/dsne
cd dsne/
make cleanpackage 

From PyPI:

pip install dsne

From conda:

conda install -c maxibor dsne

Usage

Basic usage:

from dsne import DSNE
W = DSNE(X,V,Y)

Examples

Algorithms

DSNE

Direction Stochastic Nearnest Neighbor Embedding of Velocity

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dsne-0.1.6.tar.gz (1.3 MB view details)

Uploaded Source

File details

Details for the file dsne-0.1.6.tar.gz.

File metadata

  • Download URL: dsne-0.1.6.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/54.1.2 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for dsne-0.1.6.tar.gz
Algorithm Hash digest
SHA256 873feacc39809e89918ea77ad3adfa50aa286bfe36eb1bf4200797e5c8cb725e
MD5 b7c98ce0805dba2bde9b43c3c0b77d4c
BLAKE2b-256 b948924f50bfe0d8ed0760eeeb2c823b3487916b08a02dd42623b104dea15497

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page